Частотный_преобразователь_для_трехфазного_двигателя

Частотный_преобразователь_для_трехфазного_двигателя

Частотный преобразователь своими руками

Частотный преобразователь своими руками

Частотный преобразователь своими руками — представляю вам небольшую статью о асинхронном двигателе и частотном преобразователе, который мне ранее приходилось делать. Вот и теперь потребовался хороший привод для циркулярной пилы. Конечно можно было бы взять в магазине фирменный частотник, но все-таки вариант самостоятельного изготовления оказался для меня наиболее приемлемым.

К тому же, качество регулировки скорости привода пилорамы не требовало абсолютной точности. Однако с нагрузками ударного типа и длительными перегрузками он должен справляться. К тому же хотелось сделать управление наиболее простым, без всяких там параметров, а просто установить пару кнопок.

Главные преимущества привода с регулировкой частоты:

  • Создаем из однофазного напряжения 220v полновесные три фазы 220v, сдвиг у которых будет 120°, при этом получаем абсолютный вращательный момент с мощностью на валу
  • Повышенный момент старта с плавным запуском без максимального пускового тока
  • Нет сильного замагничивания и излишнего перегрева мотора, как это бывает когда применяются конденсаторы
  • При необходимости можно свободно управлять скоростью вращения и менять направление

Ниже показана принципиальная схема устройства:

Трехфазный мост выполнен на гибридных IGBT транзисторах c диодами обратной проводимости. В целом это представляет собой бустрепное управление микроконтроллером PIC16F628A, осуществляемое с помощью специализированных оптодрайверов HCPL-3120. Во входном тракте установлен конденсатор гашения напряжения, выполняющего функцию мягкой зарядки электролитических конденсаторов в цепи постоянного напряжения.

Быстродействующая защита

Далее по схеме он зашунтирован электромагнитным реле, при этом на PIC16F628A подается цифровой логический уровень готовности. В схеме предусмотрена быстродействующая защита по току от короткого замыкания и критической перегрузке мотора, выполненная по триггерной схеме. Все это управляется при помощи двух кнопок и одного переключателя, который изменяет направление вращения вала.

Частотный преобразователь своими руками, в частности участок силовых напряжений был собран методом навесного монтажа, а контроллер размещен на печатной плате, которая показана ниже:

Постоянные резисторы с номиналом 270к, шунтирующие конденсаторы установленные в цепи затвора IGBT, запаял со стороны дорожек, так как упустил из виду сделать для них площадки. Их конечно можно заменить на smd.

Здесь показано фото печатной платы контроллера после распайки компонентов:

А это с противоположной стороны

Для подачи напряжения питания в модуль управления был изготовлен стандартный обратноходовой импульсный источник питания.

Принципиальная схема блока питания:

Чтобы изготовить частотный преобразователь своими руками в принципе можно использовать практически любой источник питания с выходным напряжением 24v. Однако, этот блок питания должен быть стабилизированный и с задержкой напряжения на выходе с момента исчезновения напряжения сети, хотябы в пределах 3-х секунд. Это обусловлено тем, что двигатель смог отключится в случае возникновения ошибки по DC. Достигается подбором электролитического конденсатора С1 с большим значением емкости.

Ну, а теперь нужно подробнее разобраться в самом важном компоненте данного устройства — в программе микроконтроллера. В интернете подходящей для меня информации по этому вопросу я не нашел, хотя были предложения установить специальные фирменные контроллеры. Но как я уже говорил, мне принципиально нужно было установить, что-то собственной разработки. Приступил во всех подробностях анализировать ШИМ модуляцию, в какое время и каким способом открыть определенный транзистор…

Программа формирования задержек

Выяснились некоторые закономерности и получился образец несложной программы формирования задержек. При ее использовании получается произвести достаточно хорошую синусоидальную ШИМ с возможностью изменять напряжение. Естественно контроллер делать какие либо вычисления не успевал, задержки не давали того эффекта, который был нужен. Следовательно, такой вариант обсчитывания ШИМ на микроконтроллере PIC16F628A я забраковал сразу.

В результате образовалась констант матрица, а ее уже отрабатывал PIC16F628A. Они формировали и диапазон частоты и напряжение питания. Конечно эта работа по созданию данного устройства несколько затянулась. Циркуляркой уже полным ходом пилили на конденсаторах, когда появился необходимый вариант прошивки. Первоначально тестировал схему на моторе от вентилятора, мощностью 180 Вт. Вот фото прибора на стадии экспериментальных работ:

Тестирование устройства

Чуть позже, в процессе испытания программа подвергалась усовершенствованию, а после запуска двигателя мощностью на 4 кВт я практически был удовлетворен итогом своей работы. Защита от короткого замыкания прекрасно срабатывает, полутора-киловаттный мотор на 1440об/мин с диском 300мм свободно справлялся с приличными брусками. Шкивы были установлены одинаковые, что на двигатель, что на вал циркулярки. При попадании пилы на сучок сетевое напряжение немного падало, хотя двигатель продолжал работать.

Читайте также:  Как_пользоваться_дрелью_видео

По ходу работы потребовалось немного натянуть ремень, поскольку при увеличении нагрузки он начинал скользить на шкиве. В дальнейшем применили двойную передачу. Но на этом решил не останавливаться, поэтому сейчас начал усовершенствовать программу, в итоге она будет значительно эффективней. Принцип работы ШИМ-контролера немного усложняется, появится больше режимов, появится ресурс раскручивания выше номинального значения.

В конце статьи файлы для того самого простого варианта устройства, которое прекрасно работает с циркулярной пилой уже больше года.

Характеристики:

  • Частота на выходе: 2,5-50Гц, шаг 1,25Гц; Частота ШИМ-контроллера синхронная, с возможностью изменения. Диапазон частот в пределах 1750-3350Гц.; Скалярное управление частотным преобразователем, мощность мотора около 4кВт. Самая меньшая частота работы при разовом нажатии кнопки «Пуск» — составляет 10Гц.
  • Во время удержании кнопки нажатой появляется разгоняющий момент, а когда кнопка отпускается, то частота буде той, до какой смог разогнаться. Частота по максимуму — 50Гц информирует светодиодный индикатор. Номинальное время разгоняющего момента составляет 2 секунды.
  • Индикатор «Готов» сообщает о готовности устройства к старту двигателя.

Частотник для трехфазного электродвигателя

Трехфазные асинхронные электродвигатели – самые распространенные электрические машины. Их отличают небольшие габариты при значительной мощности, простота конструкции, низкая стоимость. До появления частотных регуляторов применение этих устройств ограничивали высокие пусковые токи, сложные схемы регулирования скорости вращения ротора.

Ранее для этого применялись:

  • Механические устройства (муфты, редукторы и т.д.).
  • Электрические схемы, изменяющие величину питающего напряжения.

Такие методы не обеспечивали точность, жесткие механические характеристики электродвигателя во всем диапазоне регулирования вызывали значительные потери мощности. В качестве электропривода ответственного оборудования применялись электрические машины постоянного тока, а также двигатели с фазным ротором.

С появлением высоковольтных транзисторов и тиристоров стал возможным серийный выпуск частотных преобразователей для асинхронных электродвигателей мощностью до десятков МВт. Частотно-регулируемый электропривод отвечает всем современным требованиям:

  • Максимально возможный К.П.Д. (свыше 90%).
  • Надежность и простота управления.
  • Высокая ремонтопригодность.
  • Широкий диапазон и плавное регулирование скорости вращения, углового положения вала, разгона и торможения, момента силы и других параметров.
  • Высокая энергоэффективность.
  • Изменение характеристик в зависимости от фактической нагрузки на валу.
  • Помехоустойчивость и быстрое устранение ошибок.
  • Снижение тока при запуске до 100-200% от номинального.

Применение преобразователей частоты позволяет заменить дорогостоящие электромоторы переменного тока с фазным ротором и двигатели постоянного тока на дешевые асинхронные машины с короткозамкнутым ротором.

Принцип работы частотного преобразователя

Принцип частотного регулирования основан на зависимости скорости вращения магнитного поля от частоты напряжения, поданного на обмотки статора. ПЧ состоит из силовой и управляющей части. Первая состоит из управляемого или неуправляемого выпрямителя, конденсатора и инвертора. Переменное напряжение сети поступает на выпрямитель, где преобразуется в постоянное. Пульсация получаемого напряжения сглаживается на конденсаторе. Далее постоянное напряжение инвертируется в переменное и поступает в цепь питания электродвигателя.

Постоянная составляющая и высшие гармоники сглаживаются на обмотках двигателя. При необходимости между ПЧ и электрической машиной включают L-фильтры.

Частота и амплитуда напряжения в выходной цепи зависит от управляющих импульсов, отпирающих и запирающих транзисторные ключи инвертора.

Управляющая часть содержит микроконтроллер. Функции этого устройства – формирование управляющих сигналов в соответствии с заданной программой, обработка информации с датчиков, подача сигналов на внешние устройства. Кроме того, в состав управляющей схемы могут входить устройства связи, конвертор интерфейсов, дополнительная память.

Типы сигналов управления

Частотный преобразователь имеет входные и выходные клеммы для подключения датчиков, внешних устройств управления, сигнализации и контроля. Для управления частотно-регулируемым приводом используют следующие сигналы:

  • Цифровые(0-5; 0-10 В). Служат для обмена данными с ПК, а также оборудованием удаленного контроля по протоколам САN, RS232, LАN и так далее.
  • Аналоговые (0-10 В; 0-20 мА). К таким входам подключают датчики, устройства управления с соответствующим уровнем выходного сигнала.
  • Релейные. Предназначены для включения устройств оповещения, сигнальных ламп, звуковой сигнализации, тормозных электромагнитных муфт и т.д.
  • Дискретные (0-10 В; 0-20 мА). Для подключения устройств с 2 положениями.
Читайте также:  Фигурки_из_сосновых_шишек_фото

Как правильно подобрать преобразователь частоты для трехфазного двигателя

Выбор ПЧ делают по следующим критериям:

  • Способу управления. Различают векторный и скалярный способ управления электродвигателями. Последний применяется для низкопроизводительных вентиляторов, насосных агрегатов, компрессоров. Для лифтов, кранового оборудования и других устройств, требующих точной регулировки с обратной связью по нескольким характеристикам, применяют векторные ПЧ.
  • Диапазону регулирования скорости и момента. Он должен соответствовать требованиям к оборудованию.
  • Номинальному току, электрической мощности и напряжению. При этом учитывают максимальное значение величин этих характеристик. Рекомендуемый запас мощности ПЧ составляет 15-20%. На двигателе обычно указывают 2 значения напряжения при подключении в звезду или треугольник. Необходимо подобрать преобразователь с номинальным напряжением, соответствующим типу соединения обмоток.
  • Количеству аналоговых, цифровых и релейных входов и выходов. Для упрощения последующей модернизации системы управления электроприводом необходимо подобрать преобразователь частоты с большим количеством разъемов.
  • Электромагнитной совместимости. Частотный преобразователь является источником высших гармоник и электромагнитных помех. При выборе этого устройства необходимо учесть электромагнитную совместимость с другим оборудованием. При необходимости применять экранированные кабели и фильтры.
  • Классу пылевлагозащищенности IP. При невозможности подобрать подходящий ПЧ, устройство, несоответствующее условиям монтажа, устанавливают в электротехнические шкафы, обеспечивающие необходимую защиту от пыли и влаги.
  • Возможности подключения нескольких электродвигателей. Для подключения двух или более однотипных двигателей иногда достаточно одного преобразователя частоты.
  • Наличию информационного дисплея, пульта дистанционного управления, поддерживаемым протоколам обмена данными, другим дополнительным функциям.

Самостоятельное подключение ПЧ

Подключение частотных преобразователей может осуществляться собственным электротехническим персоналом предприятия. При этом руководствуются технической документацией и следующими правилами:

  • Класс ЭМС ПЧ должен соответствовать аналогичной характеристике другого электрооборудования. Для достижения этого требования используют РЧ-фильтры и экранируемые кабели.
  • Электродвигатели, для плавного пуска которых применялось переключение “звезда-треугольник”, подключают по одной рабочей схеме.
  • ПЧ защищают трехфазным автоматическим выключателем и плавкими предохранителями, включаемыми перед устройством.
  • Все управляющие кабели прокладывают раздельно. Также запрещена совместная прокладка силовой и контрольной линии.
  • Датчик температуры обмоток подключают к соответствующему входу ПЧ.
  • Недопустимо включение конденсаторных фильтров между частотником и электродвигателем. Для компенсации реактивной составляющей используют индуктивные устройства.
  • При наличии принудительного охлаждения электродвигателя, управляющую цепь также подключают к ПЧ, который обеспечивает одновременный запуск охлаждающего вентилятора и электродвигателя.
  • При установке ПЧ в шкафах управления должна быть обеспечена хорошая вентиляция и охлаждение корпуса устройства.

Частотные преобразователи применяются во всех сферах промышленности и народного хозяйства, а также для бытового электропривода. Их применение снижает потребление электроэнергии, позволяет заменить дорогие электрические машины на простые и дешевые двигатели асинхронного типа, упростить схемы автоматического управления.

Предназначение частотника для трехфазного электродвигателя, разбираемся вместе

    2 commentsПрименение Апрель 26, 2019

Создание трёхфазного асинхронного электродвигателя пришлось на конец XIX века. С тех пор, никакие промышленные работы не являются возможными без его использования. Наиболее значимый момент в рабочем процессе — плавный пуск и торможение двигателя. Это требование в полной мере выполняется при помощи частотного преобразователя.

Существует несколько вариантов названий частотника для трёхфазного электродвигателя. В том числе, он может называться:

  • Инвертором;
  • Преобразователем частоты переменного тока;
  • Частотным преобразователем;
  • Частотно регулируемым приводом.

С помощью инвертора осуществляется регуляция вращательной скорости асинхронного электродвигателя, предназначенного для преобразования электрической энергии в механическую. Осуществляемое при этом движение можно трансформировать в движение другого типа.

Специально разработанная схема частотного преобразователя позволяет доводить КПД двигателя до уровня в 98%.

Наиболее значимо использование преобразователя в конструкции электрического двигателя большой мощности. Частотник позволяет осуществлять изменения пусковых токов и задавать для них требуемую величину.

Принцип работы частотного преобразователя

Использование ручного управления пускового тока чревато излишними энергозатратами и уменьшением срока эксплуатации электрического двигателя. При отсутствии преобразователя также наблюдается превышение номинального значения напряжения в несколько раз. Из-за работы в таком режиме, также наблюдается негативное влияние.

Кроме того, частотный преобразователь обеспечивает плавность управления функционированием двигателя, ориентируясь на балансировку значений напряжения и частоты, и снижает энергопотребление вдвое.

Весь приведённый перечень положительных моментов возможен благодаря принципу двойного преобразования напряжения. Действует он следующим образом:

  1. Сетевое напряжение регулируется через выпрямление и фильтрование в звене прямого тока.
  2. Выполнение электронного управления, которое формирует определённую частоту, в соответствии с предварительно обозначенным режимом, и трёхфазное напряжение.
  3. Происходит продуцирование прямоугольных импульсов с последующей корректировкой амплитуды при помощи обмотки статора.
Читайте также:  Мясо_по_тайски_из_курицы

Как правильно подобрать преобразователь частот

Наиболее значимо при покупке частотника — не жалеть денег. В случае с преобразователем, дешёвый всегда означает малофункциональный, а это делает покупку бесполезной.

Также следует обратить внимание на тип управления преобразователя:

Высокоточная установка величины тока.

Рабочий режим ограничен заданным выходным соотношением частоты и напряжения. Данный тип управления уместен только для бытовых приборов простейшего типа.

Далее следует обратить внимание на мощность преобразователя частоты. Тут всё просто: чем больше, тем лучше.

Питающая сеть должна обеспечивать достаточно широкий диапазон напряжений. Это снижает риск поломки при резких скачках. Чрезмерно высокое напряжение может спровоцировать взрыв конденсаторов.

Показатели частоты должны удовлетворять производственным потребностям. Их нижний порог определяет широту возможностей для управления приводной скорости. Максимальный частотный диапазон возможен только при векторном управлении.

Число входящих/выходящих управляющих разъёмов должно быть немного больше минимально необходимого. Но это, конечно, отражается на повышении цены и возникновении затруднений при установке устройства.

Наконец, требуется обратить внимание на совпадение характеристик управляющей шины и параметров частотника. Это определяется по соответствию числа разъёмов.

Важно отметить способность переносить перегрузки. Запас мощности преобразователя частоты должен на 15% превосходить мощность двигателя.

Комплектация регулируемого привода

Частотный преобразователь формируется из трёх компонентов:

  1. Управляемый, либо неуправляемый выпрямитель, отвечающий за формирование напряжения ПТ (постоянного тока), поступающего от питания.
  2. Фильтр (в виде конденсатора), осуществляющий дополнительное сглаживание напряжения.
  3. Инвертор, моделирующий напряжение нужной частоты.

Самостоятельное подключение преобразователя

Перед тем, как приступать к подключению устройства следует воспользоваться обесточивающим автоматом, он обеспечит отключение всей системы в случае короткого замыкания на любой из фаз.

Схема актуальна, если требуется управлять однофазным приводом. Уровень мощности преобразователя в схеме при этом составляет до трёх киловатт, а мощность не теряется.

Способ, подходящий для подключения клемм трёхфазных частотников, питаемых промышленными трёхфазными сетями.

На рисунке схема подключения частотника 8400 Vector

Для ограничения пускового тока и снижения пускового момента при запуске электрического двигателя по мощности превосходящего 5 кВт, применяется переключение «звезда-треугольник».

Когда на статор пускается напряжение, то фигурирует подключение устройства по типу «звезда». Как только значение скорости двигателя начинает соответствовать номинальному, поступление питания осуществляется по схеме «треугольник». Но этот приём используется, только когда технические возможности позволяют подключаться по двум схемам.

В объединённой схеме «звезды» и «треугольника» наблюдаются резкие скачки токов. При переходе на второй тип подключения показания по вращательной скорости значительно уменьшаются. Для восстановления прежнего режима работы и частоты оборотов следует осуществить увеличение силы тока.

Наиболее активно применяются частотники в конструкции электрического двигателя с уровнем мощности 0,4 — 7,5 кВт.

Сборка преобразователя частот своими руками

Одновременно с промышленным производством частотных преобразователей, остаётся актуальной сборка подобного устройства своими руками. Особенно этому способствует относительная простота процесса. В результате работы инвертора производится преобразование одной фазы в три.

Применение в бытовых условиях электрических двигателей, имеющих в комплектации подобное устройство, не вызывает никаких дополнительных затруднений. Поэтому можно смело браться за дело.

На рисунке структурная схема частотных преобразователей со звеном постоянного тока.

Схемы частотного преобразователя, используемые при сборке, состоят из выпрямительного блока, фильтрующих элементов (отвечающих за отсечение переменной составляющей тока и конструируемых из IGBT-транзисторов). По стоимости покупка отдельных компонентов преобразователя и выполнение сборки своими руками обходится дешевле, чем приобретение готового устройства.

Применять самосборные частотные преобразователи можно в электродвигателях имеющих мощность 0,1 — 0,75 кВт.

В то же время, современные заводские частотники имеют расширенную функциональность, усовершенствованные алгоритмы и улучшенный контроль безопасности рабочего процесса ввиду того, что при их производстве используются микроконтроллеры.

Сферы применения преобразователей:

  • Машиностроение;
  • Текстильная промышленность;
  • Топливно-энергетические комплексы;
  • Скважинные и канализационные насосы;
  • Автоматизация управления технологическим процессом.

Стоимость электродвигателей находится в прямой зависимости от того, есть ли в его комплектации преобразователей.

Ссылка на основную публикацию
Adblock detector