Холостой_ход_электродвигателя_это

Холостой_ход_электродвигателя_это

Большая Энциклопедия Нефти и Газа

Ток — холостой ход — асинхронный двигатель

Ток холостого хода асинхронных двигателей достигает 20 — 40 % от номинального тока статора ( / 0 0 2 — 0 4 / IH), между тем как у трансформаторов ток / 0 составляет всего 2 5 — 10 % от / IH. Повышенное значение тока холостого хода асинхронной машины обуслоь-лено наличием воздушного зазора между статором и ротором. [1]

Ток холостого хода асинхронных двигателей достигает 20 — 40 % от номинального тока статора ( / 0 2 — 0 4 / IH), между тем как у трансформаторов ток / 0 составляет всего 2 5 — 10 % от / IH. Повышенное значение тока холостого хода асинхронной машины обусловлено наличием воздушного зазора между статором и ротором. [2]

Почему ток холостого хода асинхронного двигателя составляет 25 — 50 %, а у трансформатора 3 — 10 % от номинального тока. [3]

Почему ток холостого хода асинхронного двигателя составляет 25 — 50 %, а трансформатора — 3 — 10 % от номинального тока. [4]

Для определения активной составляющей тока холостого хода асинхронного двигателя необходимо предварительно вычислить: вес активной стали статора и магнитные потери в нем-для трехфазного асинхронного двигателя; вес стали статора и ротора и потери в них — для однофазного двигателя с беличьей клеткой и малоинерционного асинхронного двигателя с немагнитным полым ротором. [5]

Для определения активной составляющей тока холостого хода асинхронного двигателя необходимо предварительно вычислить: массу активной стали статора и магнитные потери в нем — для трехфазного асинхронного двигателя; массу стали статора и ротора и потери в них — для однофазного двигателя с беличьей клеткой и малоинерционного асинхронного двигателя с немагнитным полым ротором. [6]

Из-за большого магнитного сопротивления цепи с двумя воздушными зазорами ток холостого хода асинхронного двигателя значителен и является в основном реактивным током. [7]

Сопротивления Rm и Хт намагничивающего контура значительно меньше соответствующих значений для схемы замещения трансформатора, так как ток холостого хода асинхронного двигателя гораздо больше, чем у трансформатора. Если при рассмотрении работы трансформатора часто можно пренебречь намагничивающим контуром, то при рассмотрении работы асинхронного двигателя этого сделать нельзя, так как ошибка может получиться значительной. [8]

При повышении частоты и номинальном напряжении ток холостого хода и магнитный поток уменьшаются, а следовательно, снижается и вращающий момент. На рисунке 249 приведен график зависимости тока холостого хода асинхронного двигателя от частоты, который показывает, что уменьшение частоты влечет за собой резкое увеличение тока холостого хода. [10]

Ток холостого хода двигателя и потребляемая им реактивная мощность значительно возрастают в случае работы от сети с напряжением выше номинального. Поэтому во время эксплуатации необходимо следить за напряжением цеховых сетей и не допускать отклонения его от номинального. Величина тока холостого хода асинхронного двигателя возрастает также вследствие низкого качества ремонтных работ: неправильное соединение секций обмоток, изменение при перемотке обмоточных данных по сравнению с паспортными и увеличение величины воздушного зазора. [11]

Что такое холостой ход двигателя

Когда появились первые моторы, не существовало даже самого понятия холостых оборотов. Впрочем, на заре автомобилизма многое чего не знали, терминология только-только зарождалась.

Сегодня же любой нормальный автомобилист скажет, что холостые обороты мотора — это режим, в котором он работает без нагрузки. Но этого будет уже мало.

Толковые автовладельцы могут точно назвать правильную величину оборотов двигателей, который стоят на их машинах. Но неплохо бы знать, почему эти обороты именно такие, почему они изменяются, как и для чего поддерживаются? Тогда и эксплуатация автомобиля будет более осмысленной.

Читайте также:  Сок_алоэ_в_косметических_целях

Как все начиналось?

Карбюратор относится к главным автомобильным изобретениям. Около 1915 года в двигателестроении произошел серьезный прорыв: на автомобиле Packard Twin Six появился настоящий карбюратор с жиклерами и управлением опережением зажигания.

Это позволило решить две задачи: значительно увеличить мощность, подняв рабочие обороты до 3000 в минуту; снизить устойчивые обороты за счет введения специальной системы смесеобразования на малых оборотах. Это и был холостой ход.

Более поздние конструкции карбюраторов уже предусматривали регулировку и настройку смесеобразования на холостых оборотах, часто используя для этого режима отдельные дозирующие системы.

Конечно, экология и даже ресурс для тех конструкций не были определяющими факторами. Да и само слово «экология» еще не вошло в обиход. Все силы были направлены на то, чтобы постоянно совершенствовать силовые агрегаты и конструкцию авто, независимо от влияния на окружающую среду.

Для чего «холостые» нужны?

При работающем моторе мощность растет исключительно с ростом оборотов, а крутящий момент имеет пик в области средних или высоких оборотов (на наддувных агрегатах момент появляется раньше, но тоже не с нуля).

Чтобы дать мотору полезную нагрузку, нужно, чтобы он уже устойчиво крутился и был готов создавать крутящий момент. Иначе он просто заглохнет. Никаких способов обойти это ограничение не существует. Те обороты, с которых мотор может воспринимать нагрузку, и принято называть холостыми. Обороты выше холостых — рабочие.

Для большинства моторов легковых автомобилей холостые обороты составляют 500–900 оборотов в минуту, что не так уж мало.

Почему обороты не постоянны?

Чем совершеннее система питания, тем менее заметны колебания оборотов. Если на двигателе стоит простой карбюратор, водитель сам регулирует холостые обороты. Его вмешательство требуется, если температура двигателя или нагрузка на него отличаются от выставленных при регулировке холостых оборотов. С электронным карбюратором с автоматом холодного запуска человек уже ничего не регулирует, но обороты заметно повышаются для обеспечения устойчивой работы.

А что система впрыска? Она позволят лишь немного завысить холостые обороты до прогрева лямбда-сенсоров и удерживать их до нормализации смесеобразования на 100–1000 оборотов в минуту. Обороты могут немного подняться при увеличении нагрузки со стороны системы кондиционирования или нагрузки от генератора. Во всех остальных случаях исправная система должна держать обороты практически постоянными, в пределах ± 30 оборотов в минуту.

Регуляторы холостого хода и дроссельные заслонки с электроприводом со временем загрязняются, не все свечи и форсунки работают идеально, системы EGR пропускают газы, барахлят системы регулирования фаз, а у цилиндров может быть разная компрессия. Получается, что в реальной жизни на старых машинах обороты все же немного «гуляют»: или излишне снижаются под нагрузкой или же, наоборот, завышаются.

Холостые обороты — это компромисс

Увеличивать холостой ход — значит поднимать расход топлива и теплоотдачу двигателя без нагрузки. Это — плохая идея. Снижение же оборотов приводит сразу к нескольким неприятным последствиям:

1) нарушается смесеобразование: при снижении частоты вращения ухудшается очистка цилиндров от отработанных газов, затрудняется наполнение цилиндров свежей смесью, растут потери на перепуск, а значит, падает и мощность;

2) серьезной проблемой является снижение давления масла и объема его подачи, потому что чем меньше обороты, тем ниже давление (при определенном минимуме давления подшипники скольжения выходят из режима жидкостного трения и ресурс мотора стремительно уменьшается).

3) нагрузка на мотор уже на холостых оборотах может быть значительной (особенно с МКПП). Автоматические коробки передач способны предотвратить неприятности, но проблемы полностью не решают, хотя значительно увеличивают ресурс ДВС в целом.

Читайте также:  Качели_детские_для_дачи_уличные_фото

Кроме того, на машинах с АКПП нужно учитывать следующее: маслонасос АКПП приводится от коленчатого вала двигателя, а значит и работа коробки зависит от оборотов холостого хода. При слишком малых оборотах давления не хватит на корректную работу механико-гидравлической системы управления. А для систем старт-стоп приходится устанавливать гидроаккумуляторы и дополнительные электронасосы. Это позволяет гидравлике включаться в работу сразу при запуске двигателя, а не спустя пять-десять секунд…

Как видим, даже сегодня самые продвинутые моторы еще не приблизились к идеалу настолько, чтобы не учитывать целую сумму факторов, которые влияют на их работу. Значит, мотористам есть, куда расти.

§78. Режимы работы асинхронных двигателей

Режимы работы асинхронных двигателей. Холостой ход. Если пренебречь трением и магнитными потерями в стали (идеализированная машина), то ротор асинхронного двигателя при холостом ходе вращался бы с синхронной частотой n=n1 в ту же сторону, что и поле статора; следовательно, скольжение было бы равно нулю. Однако в реальной машине частота вращения ротора n при холостом ходе никогда не может стать равной частоте вращения n1, так как в этом случае магнитное поле перестанет пересекать проводники обмотки ротора и в них не возникнет электрический ток. Поэтому двигатель в этом режиме не может развить вращающего момента и ротор его под влиянием противодействующего момента сил трения начнет замедляться. Замедление ротора будет происходить до тех пор, пока вращающий момент, возникший при уменьшенной частоте вращения, не станет равным моменту, создаваемому силами трения. Обычно при холостом ходе двигатель работает со скольжением s = 0,2-0,5 %.

При холостом ходе в асинхронном двигателе имеют место те же электромагнитные процессы, что и в трансформаторе (обмотка статора аналогична первичной обмотке трансформатора, а обмотка ротора—вторичной обмотке). По обмотке статора проходит ток холостого хода I, однако его значение в асинхронном двигателе из-за наличия воздушного зазора между ротором и статором значительно больше, чем в трансформаторе (20—40 % номинального тока по сравнению с 3—10 % у трансформатора). Для уменьшения тока I в асинхронных двигателях стремятся выполнить минимально возможные по соображениям конструкции и технологии зазоры. Например, у двигателя мощностью 5 кВт зазор между статором и ротором обычно равен 0,2—0,3 мм. Ток холостого хода, так же как и в трансформаторе, имеет реактивную и активную составляющие. Реактивная составляющая тока холостого хода (намагничивающий ток) обеспечивает создание в двигателе требуемого магнитного потока, а активная составляющая — передачу в обмотку статора из сети энергии, необходимой для компенсации потерь мощности в машине в этом режиме.

Нагрузочный режим. Чем больше нагрузочный момент на валу, тем больше скольжение и тем меньше частота вращения ротора. Увеличение скольжения при возрастании момента объясняется

Рис. 260. Энергетическая диаграмма асинхронного двигателя

следующим образом. При увеличении нагрузки на валу ротора он начинает тормозиться и частота его вращения т уменьшается. Но одновременно увеличивается частота n1— n персечения вращающимся полем проводников обмотки ротора, а следовательно, э. д. с. Е2, индуцированная в этой обмотке, ток в роторе I2 и образованный им электромагнитный вращающий момент М. Этот процесс будет продолжаться до тех пор, пока электромагнитный момент двигателя M не сравняется с нагрузочным моментом Мвн. При достижении равенства моментов М = Мвн торможение прекратится и двигатель будет снова вращаться с постоянной частотой вращения, но меньшей, чем до увеличения нагрузки. При уменьшении нагрузочного момента Мвн частота вращения ротора по той же причине будет увеличиваться. Обычно при номинальной нагрузке скольжение для двигателей средней и большой мощности составляет 2—4 %, а для двигателей малой мощности от 5 до 7,5 %.

Читайте также:  Поделки_самоделки_своими_руками_из_подручных_средств

При работе двигателя под нагрузкой по обмоткам его статора и ротора проходят токи i1 и i2. Частота тока в обмотках статора f1 и ротора f2 определяется частотой пересечения вращающимся магнитным полем проводников соответствующей обмотки. Обмотка статора пересекается магнитным полем с частотой n1, а обмотка вращающегося ротора — с частотой n1 — n. Следовательно,

Передача электрической энергии из статора в ротор происходит так же, как и в трансформаторе. Двигатель потребляет из сети электрическую мощность Pэл = 3U1I1cos?1 и отдает приводимому им во вращение механизму механическую мощность Рмх (рис. 260). В процессе преобразования энергии в машине имеют место потери мощности: электрические в обмотках статора ?Рэл1 и ротора ?Рэл2, магнитные ?Рм от гистерезиса и вихревых токов в ферромагнитных частях машины и механические ?Рмх от трения в подшипниках и вращающихся частей о воздух. Из статора в ротор вращающимся электромагнитным полем передается электромагнитная мощность Pэм роторе она превращается в механическую мощность ротора Р’мх. Полезная механическая мощность на валу двигателя Pмх меньше мощности Р’мх на значение потерь мощности на трение ?Рмх.

При возрастании механической нагрузки на валу двигателя увеличивается ток I2. В соответствии с этим возрастает и ток I1 в обмотке статора.
Электромагнитный момент М создается в асинхронном двигателе в результате взаимодействия вращающегося магнитного поля с током I2, индуцируемым им в проводниках обмотки статора. Однако в создании его участвует не весь ток I2, а только его активная составляющая I2cos?2 (здесь ?2 — угол сдвига фаз между током I2 и э. д. с. Е2 в обмотке ротора). Поэтому

Фт — амплитуда магнитного потока, созданного обмоткой статора;

cм — постоянная, определяемая конструктивными параметрами данной машины и не зависящая от режима ее работы.

Поясним физический смысл формулы (84). На рис. 261 изображен ротор двухполюсного асинхронного двигателя в развернутом виде, на котором кружками показаны поперечные сечения проводников. Крестики и точки внутри проводников обозначают направление в них тока i2, а под проводниками — направление индуцированных э. д. с. e2, которые пропорциональны индукции В в данной точке воздушного зазора между статором и ротором. Кривая В показывает распределение вдоль окружности ротора индукции, создаваемой вращающимся магнитным полем, кривая i2 — распределение тока в проводниках, а кривая f — распределение электромагнитных сил, возникающих в результате взаимодействия тока (а с вращающимся магнитным полем. Электромагнитный вращающий момент М, создаваемый в результате совместного действия всех сил f, будет пропорционален среднему значению электромагнитной силы fср. Легко заметить, что к проводникам, лежащим на дуге, равной 180° — ?2, приложены силы f, увлекающие ротор за вращающимся магнитным полем, а на дуге ?2 — тормозящие силы. Поэтому при неизменном токе I2 среднее значение электромагнитной силы fср, а следовательно, и электромагнитный момент М будут тем больше, чем меньше угол ?2. Электромагнитный момент М зависит от скольжения s.

Рис. 261. Распределение индукции В, тока i2 и электромагнитных сил f, действующих на проводники асинхронного двигателя

Так, при увеличении скольжения возрастает э. д. с. Е2 в обмотке ротора и ток I2. Однако одновременно уменьшается cos?2, так как активное сопротивление обмотки ротора R2 остается неизменным, а реактивное Х2 увеличивается (возрастает частота тока f2 в обмотке ротора).

Ссылка на основную публикацию
Adblock detector