Эдс_источника_постоянного_тока

Эдс_источника_постоянного_тока

Источник Э.Д.С. и источник тока

Рисунок 1 — Обозначение на схемах источника ЭДС (слева) и реального источника напряжения (справа)

Источник ЭДС (идеальный источник напряжения) — двухполюсник, напряжение на зажимах которого постоянно (не зависит от тока в цепи). Напряжение может быть задано как константа, как функция времени, либо как внешнее управляющее воздействие.

В простейшем случае напряжение определено как константа, то есть напряжение источника ЭДС постоянно.

Реальные источники напряжения

Рисунок 3 — Нагрузочная характеристика

Идеальный источник напряжения (источник ЭДС) является физической абстракцией, то есть подобное устройство не может существовать. Если допустить существование такого устройства, то электрический ток I, протекающий через него, стремился бы к бесконечности при подключении нагрузки,сопротивление RH которой стремится к нулю. Но при этом получается, что мощность источника ЭДС также стремится к бесконечности, так как . Но это невозможно, по той причине, что мощность любого источника энергии конечна.

В реальности, любой источник напряжения обладает внутренним сопротивлением r, которое имеет обратную зависимость от мощности источника. То есть, чем больше мощность, тем меньше сопротивление (при заданном неизменном напряжении источника) и наоборот. Наличие внутреннего сопротивления отличает реальный источник напряжения от идеального. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника энергии. Эквивалентная схема реального источника напряжения представляет собой последовательное включение источника ЭДС — Е(идеального источника напряжения) и внутреннего сопротивления — r.

На рисунке 3 приведены нагрузочные характеристики идеального источника напряжения (источника ЭДС) (синяя линия) и реального источника напряжения (красная линия).

— падение напряжения на внутреннем сопротивлении;

— падение напряжения на нагрузке.

При коротком замыкании () , то есть вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток будет максимальным для данного источника ЭДС. Зная напряжение холостого хода и ток короткого замыкания, можно вычислить внутреннее сопротивление источника напряжения:

Источник тока.

Рисунок 1 — схема с условным обозначением источника тока [1]

Рисунок 2.1 — Обозначение на схемах источника тока

Рисунок 3 — Генератор тока типа токовое зеркало, собранный на биполярных транзисторах

Исто́чник то́ка (также генератор тока) — двухполюсник, который создаёт ток , не зависящий от сопротивления нагрузки, к которой он присоединён. В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе кисточнику ЭДС, чем к источнику тока.

На рисунке 1 представлена схема замещения биполярного транзистора, содержащая источник тока (с указанием S·Uбэ; стрелка в кружке указывает положительное направление тока источника тока), генерирующий ток S·Uбэ, т. е. ток, зависящий от напряжения на другом участке схемы.

Идеальный источник тока

Напряжение на клеммах идеального источника тока зависит только от сопротивления внешней цепи:

Мощность, отдаваемая источником тока в сеть, равна:

Так как для источника тока , напряжение и мощность, выделяемая им, неограниченно растут при росте сопротивления..

Реальный источник тока

Реальный источник тока, так же как и источник ЭДС, в линейном приближении может быть описан таким параметром, как внутреннее сопротивление . Отличие состоит в том, что чем больше внутреннее сопротивление, тем ближе источник тока к идеальному (источник ЭДС, наоборот, чем ближе к идеальному, тем меньше его внутреннее сопротивление). Реальный источник тока с внутренним сопротивлением эквивалентен реальному источнику ЭДС, имеющему внутреннее сопротивление и ЭДС .

Напряжение на клеммах реального источника тока равно:

Сила тока в цепи равна:

Мощность, отдаваемая реальным источником тока в сеть, равна:

Читайте также:  Быстрый_хлеб_в_духовке_рецепт_с_фото

Примеры

Источником тока является катушка индуктивности, по которой шёл ток от внешнего источника, в течение некоторого времени () после отключения источника. Этим объясняется искрение контактов при быстром отключении индуктивной нагрузки: стремление к сохранению тока при резком возрастании сопротивления (появление воздушного зазора) ведёт кпробою зазора .

Вторичная обмотка трансформатора тока, первичная обмотка которого последовательно включена в мощную линию переменного тока, может рассматриваться как почти идеальный источник тока, только не постоянного, а переменного. Поэтому размыкание вторичной цепи трансформатора тока недопустимо; вместо этого при необходимости перекоммутации в цепи вторичной обмотки без отключения линии эту обмотку предварительно шунтируют.

Применение

Реальные генераторы тока имеют различные ограничения (например по напряжению на его выходе), а также нелинейные зависимости от внешних условий. Например, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Источники тока широко используются в аналоговой схемотехнике, например, для питания измерительных мостов, для питания каскадов дифференциальных усилителей, в частностиоперационных усилителей.

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем. Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

Источник тока, управляемый напряжением (сокращенно ИТУН)

Источник тока, управляемый током (сокращенно ИТУТ)

laborat / 3.3Электродвижущая сила источника

«ВЫСШИЙ ГОСУДАРСТВЕННЫЙ КОЛЛЕДЖ СВЯЗИ»

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ ИСТОЧНИКА ТОКА МЕТОДОМ КОМПЕНСАЦИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ №3.3

для студентов всех специальностей

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ ИСТОЧНИКА ТОКА МЕТОДОМ КОМПЕНСАЦИИ

Определить ЭДС не менее трех неизвестных источников.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ

1. Набор источников тока.

2. Нормальный элемент.

Условием движения электрических зарядов в проводнике является наличие в нем электрического поля, которое создается и поддерживается особыми устройствами, получившими название источников тока.

Основной величиной, характеризующей источник тока, является его электродвижущая сила. Электродвижущей силой источника (сокращенно ЭДС) называется скалярная физическая величина – количественная мера способности источника создавать на его зажимах (полюсах) разность потенциалов. Она равна работе сторонних сил по перемещению заряженной частицы с положительным единичным зарядом от одного полюса источника к другому, т.е.

. (1)

В СИ ЭДС измеряется в вольтах (В), т.е. в тех же единицах, что и напряжение.

Сторонние силы источника – это силы, которые осуществляют разделение зарядов в источнике и тем самым создают на его полюсах разность потенциалов. Эти силы могут иметь различную природу, но только не электрическую (отсюда и название).

Если электрическую цепь разделить на два участка – внешний, с сопротивлением R, и внутренний, с сопротивлением r, то ЭДС источника тока окажется равной сумме напряжений на внешнем и внутреннем участках цепи:

. (2)

По закону Ома напряжение на любом участке цепи определяется величиной протекающего тока и его сопротивлением:

.

Так как , следовательно

, (3)

т.е. напряжение на полюсах источника при замкнутой цепи зависит от соотношения сопротивлений внутреннего и внешнего участков цепи. Если , то приблизительно равно U. На этом основано приблизительное определение ЭДС при помощи вольтметра с большим сопротивлением, подключаемого к полюсам источника. Только в отсутствие тока в источнике его ЭДС будет равна напряжению на полюсах.

Величину ЭДС можно определить точно электростатическим или компенсационным методом. При измерении ЭДС электростатическим методом цепь остается разомкнутой, т.к. измерение разности потенциалов на полюсах источника проводится прибором, не потребляющим тока (электрометр, электростатический вольтметр). При измерении ЭДС компенсационным методом цепь источника замкнута, но необходимые отсчеты делаются в моменты отсутствия тока в источнике.

Компенсационный метод определения ЭДС

Читайте также:  Спальня_в_старинном_стиле_фото

Сущность метода компенсации в измерении ЭДС заключается в подборе и определении напряжения на участке электростатической цепи, равного ЭДС исследуемого источника.

Схема электрической цепи для определения ЭДС методом компенсации изображена на рис.1.

Два источника ЭДС и x включены навстречу друг другу. Сопротивления R1 и R2 выполнены в виде однородной проволоки, натягиваемой между точками А и В, а точка С определяется скользящим контактом (при необходимости очень высокой точности измерений R1 и R2 представляют собой магазины сопротивлений).

Выберем положительные направления токов, как показано на рис.1, и применим к рассматриваемой схеме правила Кирхгофа. Первое правило для точек А и С дает

(4)

Второе правило для контуров АBCA и АxСА приводит к уравнениям:

(5)

(6)

Эти уравнения вполне определяют все неизвестные токи. Однако мы ограничимся частным случаем и предположим, что сопротивления R1 и R2 подобраны таким образом, что ток Ix в цепи гальванометра G равен 0. В этом случае уравнения (4)-(6) принимают вид

,

Из двух последних уравнений находим

, (7)

где R – полное сопротивление струны, которое не зависит от положения скользящего контакта С.

Предположим теперь, что вместо источника с неизвестной ЭДС x мы включили в схему другой источник н с известной ЭДС и перемещением контакта С, а следовательно, изменением переменных сопротивлений, вновь добились компенсации (I1=0). Для этого вместо сопротивления rx потребовалось ввести сопротивление rн. Тогда

. (8)

Разделив почленно (7) на (8), получим

. (9)

Это равенство и лежит в основе сравнения ЭДС методом компенсации.

Отметим, что отношение сравниваемых ЭДС не зависит от внутренних сопротивлений источников и от других сопротивлений схемы, а определяется только отношением сопротивлений участка цепи, к которому поочередно подключают сравниваемые источники ЭДС. Не требуется знать и ЭДС вспомогательного источника , которая только должна быть достаточно постоянна во время измерения и больше обеих сравниваемых ЭДС и .

МЕТОДИКА ЭКСПЕРИМЕНТА И ОПИСАНИЕ УСТАНОВКИ

ЭДС гальванического элемента в данной работе определяется путем ее сравнения с ЭДС нормального элемента =1,00 В. Напряжение между электродами этого и подобных ему других нормальных элементов весьма постоянно. Поэтому они играют в электрической измерительной технике ту же роль, что и эталоны длины (метр) и массы (килограмм) при измерении механических величин.

Схема соединения приборов изображена на рис.2, где — вспомогательный источник питания; АВ – струна реохорда со скользящим контактом С; и – нормальный и исследуемый элементы; G – гальванометр; П – двухполюсный переключатель; К – ключ, замыкающий цепь вспомогательного источника питания.

Решение равенства (9) относительно позволяет получить формулу для вычисления ЭДС исследуемого элемента

(10)

Струна АВ является однородным проводником постоянного сечения.

Сопротивления ее участков цепи R1 и R (длиной lx и lн соответственно), входящих в (10), можно выразить как

R1 и R =.

Подставляя эти значения в (10) , окончательно получаем расчетную формулу для определения ЭДС исследуемого источника тока

. (11)

Как видим, в этой формуле отношение сопротивлений участков струны равно отношению их соответствующих длин.

Метод компенсации практически можно осуществить при следующих условиях:

ЭДС основного источника должна быть больше ЭДС как эталонного, так и исследуемого элементов;

2) цепь следует замыкать на малые промежутки времени, достаточные для фиксирования наличия или отсутствия тока в гальванометре.

Порядок выполнения работы

1. Собрать схему, изображенную на рис.2 (если она собрана, убедиться в ее соответствии рисунку).

2. Включить элемент в цепь гальванометра (тумблер П в верхнем положении). Перемещая контакт С, добиться компенсации этого элемента напряжением на участке струны АС, т.е. установления «0» на гальванометре. Измерить длину участка струны lн, при которой осуществляется компенсация.

Читайте также:  Красивые_кусты_роз_фото

3. Включить один из пяти неизвестных элементов в цепь гальванометра (тумблер П в нижнем положении). Перемещая контакт С, добиться компенсации этого элемента напряжением на участке струны АС, о чем свидетельствует установление «0» на гальванометре. Измерить длину участка струны lх, при которой осуществляется компенсация.

4. Рассчитать ЭДС неизвестного элемента по формуле (11).

5. Повторить измерения, указанные в пунктах 2-4 еще несколько раз для получения более точных результатов. Рассчитать среднее значение ЭДС и погрешность результата. Результаты измерений и расчетов записать в таблицу 1 с обязательным указанием размерности всех используемых величин.

Источники ЭДС и тока: основные характеристики и отличия

Электротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.

Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:

механической энергии вращения роторов генераторов;

протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;

теплоты в терморегуляторах;

магнитных полей в магнитогидродинамических генераторах;

световой энергии в фотоэлементах.

Все они обладают различными характеристиками. Чтобы классифицировать и описать их параметры принято условное теоретическое разделение на источники:

Электрический ток в металлическом проводнике

Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.

Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.

На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).

Схемы обозначения и вольт-амперные характеристики источников ЭДС

Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.

На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.

В действительности источниками напряжения работают различные химические и гальванические элементы, аккумуляторные батареи, электрические сети. Их разделяют на источники:

постоянного и переменного напряжения;

управляемые напряжением или током.

Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.

Схемы обозначения и вольт-амперная характеристика источника тока

Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.

Реальный источник тока отличается от идеального значением внутреннего сопротивления.

Примерами источника тока могут служить:

Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.

Катушки индуктивности, по которым проходил ток в течение некоторого времени после снятия питания со схемы. Быстрое отключение индуктивной нагрузки (резкое возрастание сопротивления) может привести к пробою зазора.

Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.

В различной литературе источники тока и напряжения могут обозначаться неодинаково.

Виды обозначений источников тока и напряжения на схемах

Ссылка на основную публикацию
Adblock detector