Электрический_ток_в_вакууме_термоэлектронная_эмиссия

Электрический_ток_в_вакууме_термоэлектронная_эмиссия

20. Электрический ток в вакууме. Термоэлектронная эмиссия Ламповый диод. Электронно-лучевая трубка

Свободные электроны в металлах находятся в непрерывном хаотическом движении, но, несмотря на это, при невысоких температурах не вылетают за пределы металла. Происходит это потому, что каждый свободный электрон притягивается к близлежащим положительным ионам кристаллической решетки. Чтобы вылететь из металла, электрон должен преодолеть силы притяжения положительных ионов, т.е. совершить работу против этих сил, а для этого он должен обладать достаточной кинетической энергией.

Энергию, которую должен затратить электрон для того, чтобы вылететь за пределы металла, называют работой выхода из данного металла.

При нагревании металла средняя кинетическая энергия свободных электронов увеличивается, возрастает число электронов, у которых она становится равной или большей работы выхода, а поэтому при достаточно высоких температурах (1100 – 1200К) из металла начинает вылетать достаточно большое количество электронов.

Испускание электронов нагретыми металлами называют термоэлектронной эмиссией. Это явление лежит в основе принципа действия большинства электровакуумных приборов (радиоламп, электронно-лучевых трубок).

Электрический ток в вакууме представляет собой направленное движение электронов.

Вакуумный диод – это двухэлектродная электронная лампа. Внутри стеклянного или керамического баллона, в котором создан вакуум (10 – 6 — 10 –7 мм.рт.ст) расположены нить накала, анод и катод.

Нитью накала является проволочка, через которую пропускают электрический ток. Катод представляет собой металлическую трубку, охватывающую нить накала, не касаясь её. Поверхность катода покрывают иногда слоем оксидов щелочноземельных элементов (например, бария), чтобы уменьшить работу выхода электронов из металла. При нагревании катода с его поверхности эмитируют электроны. Такой катод называют катодом косвенного накала. Если катодом является сама нить накала, то его называют катодом прямого накала. Анод представляет собой пустотелый металлический цилиндр, внутри которого коаксиально расположены нить накала и катод.

Вакуумный диод обладает односторонней проводимостью. Его используют для выпрямления переменного тока.

Этот прибор предназначен для преобразования в видимое изображение различных электрических сигналов. Электронно-лучевая трубка представляет собой баллон, из которого выкачан воздух. В узкой и длинной части баллона находится электронная пушка. Она служит для получения узкого пучка электронов (электронного луча) и состоит из нити накала, катода, управляющего электрода, первого и второго анода.

Электроны, вылетевшие из катода, формируются остальными электродами электронной пушки в электронный луч, который, выйдя из отверстия второго анода и, пройдя через две пары отклоняющих электродов (две пары взаимно перпендикулярных пластин), попадает на экран, покрытый люминофором.

Электронно-лучевые трубки с электростатическим отклонением луча используют обычно в электронных осциллографах. Электронно-лучевые трубки с магнитным отклонением луча используют в качестве кинескопов телевизоров.

13.2. Термоэлектронная эмиссия. Электрический ток в вакууме.

Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего на­блюдается явление испускания электро­нов, или электронной эмиссии. В зависи­мости от способа сообщения электронам энергии различают термоэлектронную, фо­тоэлектронную, вторичную электронную и автоэлектронную эмиссии.

1. Термоэлектронная эмиссия — это испускание электронов нагретыми метал­лами. Концентрация свободных электро­нов в металлах достаточно высока, поэто­му даже при средних температурах вслед­ствие распределения электронов по скоро­стям (по энергии) некоторые электроны обладают энергией, достаточной для прео­доления потенциального барьера на гра­нице металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше ра­боты выхода, растет, и явление термоэлек­тронной эмиссии становится заметным.

Исследование закономерностей термо­электронной эмиссии можно провести с по­мощью простейшей двухэлектродной лам­пы — вакуумного диода, представляюще­го собой откачанный баллон, содержащий два электрода: катод К и анод А. В про­стейшем случае катодом служит нить из тугоплавкого металла (например, воль­фрама), накаливаемая электрическим то­ком. Анод чаще всего имеет форму ме­таллического цилиндра, окружающего ка­тод. Если диод включить в цепь, как это показано на рис. 13.1, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи Ба, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод ис­пускает отрицательные частицы — элек­троны. Если поддерживать температуру на­каленного катода постоянной и снять за­висимость анодного тока Iа от анодного напряжения Uaвольт-амперную харак­теристику (рис.13.2), то оказывается, что она не является линейной, т. е. для ваку­умного диода закон Ома не выполняется. Зависимость термоэлектронного тока I от анодного напряжения в области малых положительных значений U описывается законом трех вторых (установлен русским физиком С. А. Богуславским (1883— 1923) и американским физиком И. Ленгмюром (1881 — 1957)):

Читайте также:  Как_заставить_цвести_хризантему_в_саду

где В — коэффициент, зависящий от фор­мы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого

максималь­ного значения Iнас, называемого током на­сыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение на­пряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода.

Плотность тока насыщения определя­ется формулой Ричардсона — Дешмана, выведенной теоретически на основе кван­товой статистики:

где А — работа выхода электронов из ка­тода, Т — термодинамическая температу­ра, С — постоянная, теоретически одина­ковая для всех металлов. На рис.13.2 представлены вольт-ам­перные характеристики для двух темпера­тур катода: T1 и Т2, причем T2>T1. С по­вышением температуры катода испуска­ние электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При Ua=0 наблюдается анодный ток, т. е. некоторые электроны, эмиттируемые катодом, обладают энергией, достаточной для преодоления работы выхода и дости­жения анода без приложения электриче­ского поля.

Явление термоэлектронной эмиссии ис­пользуется в приборах, в которых необхо­димо получить поток электронов в вакуу­ме, например в электронных лампах, рен­тгеновских трубках, электронных микро­скопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике, автоматике и телемеханике для выпрямле­ния переменных токов, усиления электри­ческих сигналов и переменных токов, гене­рирования электромагнитных колебаний и т. д. В зависимости от назначения в лампах используются дополнительные управляющие электроды.

2. Фотоэлектронная эмиссия — это эмиссия электронов из металла под действием света, а также коротковол­нового электромагнитного излучения (например, рентгеновского). Основные закономерности этого явления будут разобраны при рассмотрении фотоэлек­трического эффекта.

3. Вторичная электронная эмиссия — это испускание электронов поверхностью металлов, полупроводников или диэлек­триков при бомбардировке их пучком электронов. Вторичный электронный поток состоит из электронов, отраженных повер­хностью (упруго и неупруго отраженные электроны), и «истинно» вторичных элек­тронов — электронов, выбитых из металла, полупроводника или диэлектрика первич­ными электронами.

Отношение числа вторичных электро­нов n2 к числу первичных п1, вызвавших эмиссию, называется коэффициентом вто­ричной электронной эмиссии:

Он зависит от природы мате­риала поверхности, энергии бомбардиру­ющих частиц и их угла падения на поверх­ность. У полупроводников и диэлектриков его значение больше, чем у металлов. Это объясняется тем, что в металлах, где концентрация электронов проводимости велика, вторич­ные электроны, часто сталкиваясь с ними, теряют свою энергию и не могут выйти из металла. В полупроводниках и диэлектри­ках же из-за малой концентрации элек­тронов проводимости столкновения вто­ричных электронов с ними происходят гораздо реже и вероятность выхода вторич­ных электронов из эмиттера возрастает в несколько раз.

Явление вторичной электронной эмис­сии используется в фотоэлектронных ум­ножителях (ФЭУ), применяемых для уси­ления слабых электрических токов.

4. Автоэлектронная эмиссия — это эмиссия электронов с поверхности метал­лов под действием сильного внешнего электрического поля. Эти явления можно наблюдать в откачанной трубке, конфигу­рация электродов которой (катод — острие, анод — внутренняя поверхность трубки) позволяет при напряжениях при­мерно 10 3 В получать электрические поля напряженностью примерно 10 7 В/м. При постепенном повышении напряжения уже при напряженности поля у поверхности катода примерно 10 5 —10 6 В/м возникает слабый ток, обусловленный электронами, испускаемыми катодом. Сила этого тока увеличивается с повышением напряжения на трубке. Токи возникают при холодном катоде, поэтому описанное явление назы­вается также холодной эмиссией. Объяс­нение механизма этого явления возможно лишь на основе квантовой теории.

Читайте также:  Каким_цветом_красить_спальню

Электрический ток в вакууме термоэлектронная эмиссия

«Физика — 10 класс»

Какое физическое явление называют постоянным током?
Каковы условия существования электрического тока?

До открытия уникальных свойств полупроводников в радиотехнике использовались исключительно электронные лампы.

Откачивая газ из сосуда (трубки), можно получить газ с очень малой концентрацией молекул.

Состояние газа, при котором молекулы успевают пролететь от одной стенки сосуда к другой, ни разу не испытав соударений друг с другом, называют вакуумом.

Если в сосуд с вакуумом поместить два электрода и подключить их к источнику тока, то ток между электродами не пойдёт, так как в вакууме нет носителей заряда. Следовательно, для создания тока в трубке должен быть источник заряженных частиц.

Термоэлектронная эмиссия.

Чаще всего действие такого источника заряженных частиц основано на свойстве тел, нагретых до высокой температуры, испускать электроны.

Явление испускания электронов нагретыми металлами называется термоэлектронной эмиссией.

Это явление можно рассматривать как испарение электронов с поверхности металла. У многих твёрдых веществ термоэлектронная эмиссия начинается при температурах, при которых испарение самого вещества ещё не происходит. Такие вещества и используются для изготовления катодов.

Односторонняя проводимость. Диод.

Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод, в отличие от холодного, непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод в секунду, равно числу электронов, возвратившихся на электрод за это время. Чем выше температура металла, тем выше плотность электронного облака.

При подключении электродов к источнику тока между ними возникает электрическое поле. Если положительный полюс источника тока соединён с холодным электродом (анодом), а отрицательный — с нагретым (катодом), то вектор напряжённости электрического поля направлен к нагретому электроду. Под действием этого поля электроны частично покидают электронное облако и движутся к холодному электроду. Электрическая цепь замыкается, и в ней устанавливается электрический ток. При противоположной полярности включения источника напряжённость поля направлена от нагретого электрода к холодному. Электрическое поле отталкивает электроны облака назад к нагретому электроду. Цепь оказывается разомкнутой.

Односторонняя проводимость широко использовалась раньше в электронных приборах с двумя электродами — вакуумных диодах, которые служили, как и полупроводниковые диоды, для выпрямления электрического тока. Однако в настоящее время вакуумные диоды практически не применяются.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в это отверстие, образуя за анодом электронный пучок. Количеством электронов в пучке можно управлять, поместив между катодом и анодом дополнительный электрод и изменяя его потенциал.

Свойства электронных пучков и их применение.

Испускаемые катодом потоки электронов, движущихся в вакууме, называют иногда катодными лучами.

Перечислим свойства электронных пучков (катодных лучей).

1) Электроны в пучке движутся по прямым линиям.
2) Электронный пучок, попадая на мишень, передаёт ей часть кинетической энергии, что вызывает её нагревание. В современной технике это свойство используют для электронной плавки в вакууме сверхчистых металлов.
3) При торможении быстрых электронов, попадающих на вещество, возникает рентгеновское излучение. Это явление используют в рентгеновских трубках.
4) Некоторые вещества (стекло, сульфиды цинка и кадмия), бомбардируемые электронами, светятся. В настоящее время среди материалов этого типа (люминофоров) применяются такие, у которых в световую энергию превращается до 25% энергии электронного пучка.

Читайте также:  Al_ko_hw_3500_inox_classic_отзывы

5) Электронные пучки отклоняются электрическим полем. Например, проходя между пластинами конденсатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис. 16.20).
6) Электронный пучок отклоняется также в магнитном поле. Пролетая над северным полюсом магнита, электроны отклоняются влево, а пролетая над южным, отклоняются вправо. Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоёв атмосферы (полярное сияние) наблюдается только у полюсов.
7) Электронные пучки обладают ионизирующей способностью.
8) Электронные пучки могут проходить сквозь очень тонкие металлические пластины толщиной 0,003—0,03 мм.

Электронно-лучевая трубка.

Возможность управления электронным пучком с помощью электрического или магнитного поля и свечение покрытого люминофором экрана под действием пучка применяют в электронно-лучевой трубке.

Электронно-лучевая трубка была основным элементом первых телевизоров и осциллографа — прибора для исследования быстропеременных процессов в электрических цепях (рис. 16.21).

Устройство электронно-лучевой трубки показано на рисунке 16.22. Эта трубка представляет собой вакуумный баллон, одна из стенок которого служит экраном. В узком конце трубки помещён источник быстрых электронов — электронная пушка (рис. 16.23). Она состоит из катода, управляющего электрода и анода (чаще несколько анодов располагается друг за другом). Электроны испускаются нагретым оксидным слоем с торца цилиндрического катода С, окружённого теплозащитным экраном Н. Далее они проходят через отверстие в цилиндрическом управляющем электроде В (он регулирует число электронов в пучке). Каждый анод (А 1 и А2) состоит из дисков с небольшими отверстиями. Эти диски вставлены в металлические цилиндры. Между первым анодом и катодом создаётся разность потенциалов в сотни и даже тысячи вольт. Сильное электрическое поле ускоряет электроны, и они приобретают большую скорость. Форма, расположение и потенциалы анодов выбирают так, чтобы наряду с ускорением электронов осуществлялась и фокусировка электронного пучка, т. е. уменьшение площади поперечного сечения пучка на экране почти до точечных размеров.

На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин, подобных пластинам плоского конденсатора (см. рис. 16.22). Если электрического поля между пластинами нет, то пучок не отклоняется и светящаяся точка располагается в центре экрана. При сообщении разности потенциалов вертикально расположенным пластинам пучок смещается в горизонтальном направлении, а при сообщении разности потенциалов горизонтальным пластинам он смещается в вертикальном направлении.

Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса электронов очень мала, то они почти мгновенно, т. е. за очень короткое время, реагируют на изменение разности потенциалов управляющих пластин.

В настоящее время чаще используются телевизоры с жидкокристаллическим или плазменным экраном.

В электронно-лучевой трубке, применяемой в телевизоре (так называемом кинескопе), управление пучком, созданным электронной пушкой, осуществляется с помощью магнитного поля. Это поле создают катушки, надетые на горловину трубки (рис. 16.24).

Цветной кинескоп содержит три разнесённые электронные пушки и экран мозаичной структуры, составленный из люминофоров трёх типов (красного, синего и зелёного свечения). Каждый электронный пучок возбуждает люминофоры одного типа, свечение которых в совокупности даёт на экране цветное изображение.

Электронно-лучевые трубки широко применялись в дисплеях — устройствах, присоединяемых к электронно-вычислительным машинам (ЭВМ). На экран дисплея, подобный экрану телевизора, поступала информация, записанная и переработанная ЭВМ. Можно было непосредственно видеть текст на любом языке, графики различных процессов, изображения реальных объектов, а также воображаемые объекгы, подчиняющиеся законам, записанным в программе вычислительной машины.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Электрический ток в различных средах — Физика, учебник для 10 класса — Класс!ная физика

Ссылка на основную публикацию
Adblock detector