Электроэнергия_с_помощью_ветра

Электроэнергия_с_помощью_ветра

Расчет выработки энергии ветрогенераторной станцией

Ветрогенератор в автономной системе очень нужен. По большей части тем, что его выработка не имеет ярко выраженной зависимости от сезонов. Солнечные батареи, в наших широтах, хорошо работают летом и плохо зимой, тогда как ветрогенераторы сохраняют свою эффективность в зимний период. Немало важно то, что сильные ветра, как правило, наблюдаются в пасмурную погоду, поэтому совместное применение ветрогенераторов и солнечных панелей достаточно обоснованно. В этой статье мы рассматриваем малые ветроэнергетические установки (ВЭУ) т.е. установки мощностью от 40 Вт до 20 кВт.

Ветрогенераторы достаточно эффективны в прибрежных районах, либо на возвышенностях, где скорости ветра выше и ветра чаще. На большей части территории России средняя скорость ветра составляет 4-5 метров в секунду, что создает неблагоприятные условия для применения ветрогенераторов (и это на высоте 10 м от поверхности земли, стандартная высота расположения анемометра на метеостанциях). Но данные усреднены, поэтому следует изучить энергопотенциал конкретной местности, если существует подозрение, что ветрогенератор может быть эффективен.

Основная проблема ветровых станций заключается в том, что их эффективность мала при низких скоростях ветра. Если внимательно посмотреть на кривую зависимости мощности от скорости ветра, то можно обнаружить следующее: стартовая скорость большинства современных ВЭУ располагаться в пределах 3 — 4 м/с. Но необходимо, чтоб ветровой поток продержался на этом уровне не наименее 10 мин, лишь тогда автоматика даст позволение на запуск ВЭУ. При этом более-менее ощутимая, выработка энергии начнется только при 7 метрах в секунду, а ВЭУ, трудящаяся при средней скорости 6 м/с, генерирует емкость на 44 % большую, чем при скорости 5 м/с…

Многие хотят уменьшить начальную скорость ветра при котором начинается вращаться турбина до 1-2 м/с — мол слабый ветер бывает всегда и пусть в аккумуляторы всегда что-то "капает". Однако, при такой скорости ветер имеет ОЧЕНЬ мало энергии. Если ветрогенератор и вся система рассчитаны на 3-5кВт, то 5-10 Вт не решат никаких проблем.

Перейдем теперь к методам расчета систем с ветряными электростанциями. Покупая устройство, вы будете знать его заявленную номинальную мощность, а также найдете в инструкции график зависимости мощности вырабатываемой "ветряком" от скорости ветра.

Из формулы P=( η*КИЭВ* ρ*V 3 *π*D 2 )/8 видно, что мощность ветрового потока пропорциональна кубу скорости ветра и квадрату диаметра колеса турбины. Это означает, что при увеличении скорости ветра вдвое, мощность потока возрастет в 8 раз, а при увеличении длины лопастей вдвое, мощность ветрогенератора возрастет в 4 раза.

В таблице приведены величины мощности ветровой турбины, в зависимости от скорости ветра и диаметра колеса турбины. Коэффициент эффективности турбины k = 0,25.

V м/с 3 4 5 6 7 8 9 10 11
P Вт d = 1м 3 8 15 27 42 63 90 122 143
P Вт d = 2м 13 31 61 107 168 250 357 490 650
P Вт d = 3м 30 71 137 236 376 564 804 1102 1467
P Вт d = 4м 53 128 245 423 672 1000 1423 1960 2600
P Вт d = 5м 83 196 383 662 1050 1570 2233 3063 4076
P Вт d = 6м 120 283 551 953 1513 2258 3215 4410 5866
P Вт d = 7м 162 384 750 1300 2060 3070 4310 6000 8000
P Вт d = 8м 212 502 980 1693 2689 4014 5715 7840 10435
P Вт d = 9м 268 635 1240 2140 3403 5080 7230 9923 13207
P Вт d = 10м 331 784 1531 2646 4200 6270 8930 12250 16300

Вы видите, как сильно возрастает величина мощности ветрового потока при увеличении скорости ветра только на 1 м/с.

Прежде чем звонить в компанию занимающуюся продажей ветрогенераторных установок надо узнать две цифры:

1) Потребление электроэнергии в месяц в киловатт-часах — все платят за электричество в квартирах или домах ежемесячно и эта цифра поможет оценить Ваши потребности.

Можно эту цифру посчитать примерно и самому, например:

1. Лампочка (сразу лучше меняйте на энергосберегающие или LED) — 20Вт — эквивалент 100Вт обычной (1кВт — это 1000Вт, то есть 20Вт — это 0,02кВт) горит 5 часов в день, поэтому мощность в кВт умножаем на часы работы в месяц — 0,02 * 5 * 30(дней в месяце) = 3кВт*часа в месяц.

2. Холодильник 300Вт, работает примерно 30% времени, то есть 8 часов в сутки — 0,3 * 8 * 30 = 72кВт*часа в месяц.

3. Электрочайник 1,5 кВт, работает 0,5 часа в день — 1,5 * 0,5 *30 = 22,5кВт*часа в месяц

И так далее по всем приборам.

Потом всё суммируете — 3 + 72 + 22,5 = 97,5кВт*час в месяц.

Это и есть месячное потребление — примерно 100кВт*час в месяц в данном примере.

2) Среднегодовая скорость ветра в предполагаемом месте установки — её можно приблизительно узнать в ближайшей метеостанции.

Для выбора инвертора надо знать максимальную (пиковую) мощность потребления электроприборов с небольшим запасом — по ней выбирается его мощность. При наличии этих показателей можно быстро и грамотно подобрать необходимое оборудование, обратившись к продающей его организации.

При выборе оборудования не стоит опираться на мощность ветрогенератора — она сильно зависит от скорости ветра. Это только в бензогенераторе она соответствует указанной в паспорте. 5кВт ветрогенератор при слабом ветре (3-4м/с) выдаёт всего 0,1-0,2 кВт.

Очень часто покупатель ориентируется на максимальную (пиковую) мощность своего потребления и просит постоянно эту мощность — например 5кВт, как в бензогенераторе, например — начинаем разбираться, считать — и оказывается, что для лампочек, холодильника, телевизора и насоса вполне хватает 0,5кВт постоянной мощности — а это две большие разницы. Оценивать своё электропотребление нужно только по киловатт — часам в месяц.

Но и не стоит определять среднюю выдаваемую ветрогенератором мощность по среднегодовой скорости ветра — это будет намного заниженная цифра.

Существует атлас ветров России, в котором есть данные по ветру в 332 метеостанциях. "Роза ветров" так часто употребляемая обывателем в данной теме к ней относится "поскольку-постольку" — это статистика по направлениям ветра, а ветрогенератору всё равно — как часто с какой стороны дует. А вот при определении места установки ветрогенератора "Розу ветров" лучше учитывать, чтобы на направлении основных ветров не оказались высокие строения, деревья и прочие препятствия.

Читайте также:  Можно_ли_сажать_дуб_во_дворе

Выбор мачты

Какую мачту выбрать — с растяжками или без?

Если место позволяет, то лучше ставить мачту с растяжками — она будет стоить в 3-5 раз дешевле мачты без растяжек. В настоящее время накоплен уже довольно богатый опыт установки мачт для ветрогенераторов на территории РФ и он позволяет утверждать об этом однозначно.

Иногда предлагают телескопические мачты — они удобны при частых подъёмах и опусканиях, в чём нет особой необходимости при использовании с ветрогенератором. Мощный ветряк на неё не поставишь — не более 1-2кВт, зато стоить она будет намного дороже.

Какой высоты должна быть мачта?

При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.

  • Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
  • Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
  • Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.

Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.

Конечно, чем выше мачта, тем лучше (чем больше высота — тем сильнее ветер, прямая зависимость), но не всегда более высокая мачта технически или экономически оправдывает себя. Посоветуйтесь со специалистом — обычно простого описания по телефону будет достаточно для определения оптимальной высоты мачты. При выборе высоты мачты учитывается рельеф, растительность (близость леса и отдельно стоящие деревья) и застроенность местности. Обычно это от 10 до 20 метров.

  • Если местность открытая — практически на поле, например, то вполне хватит мачты высотой и 10м.
  • Если местность застроена одноэтажными домиками и имеет небольшие деревья — больше подойдёт 15м мачта.
  • Если же рядом двухэтажные дома и высокие деревья или лес — то лучше ставить мачту высотой 20м.

Высота мачты практически не зависит от мощности ветрогенератора (от 1 до 10кВт). Для ветрогенераторов 1-4кВт мы предлагаем 8 и 12м мачты, поскольку более высокие стоят достаточно дорого для данного класса оборудования.

Все вышесказанное относится к мачтам для ветровых генераторов с горизонтальной осью вращения. Для ветровых генераторов с вертикальной осью вращения при выборе мачты существуют свои резоны, в данной статье не рассматриваемые.

​Ветряк или ветряные установки для выработки электроэнергии

Ветроэлектростанции (ВЭС), или как их еще называют ветряки – это устройства, преобразующие энергию движения ветра в электричество. Электричество, получаемое при помощи ветряков, является простым и экологичным источником энергии, поэтому в некоторых частях земли построены огромные комплексы, объединяющие множество ветрогенераторов в единую сеть. Такие массивы способны обеспечивать электроэнергией крупные населенные пункты, и даже целые регионы. Но для питания частного дома достаточно одного небольшого ветряка, и получать электричество при его помощи можно практически в любой местности.

Содержание

Классификация ВЭС

Существует множество разновидностей ВЭС, и все их можно классифицировать по различным признакам. Основным отличительным признаком являются конструктивные особенности. По конструкции они подразделяются на роторные и крыльчатые. По способу расположения выделяют следующие виды:

А по функциональному назначению ветряные электростанции бывают стационарные и мобильные.

Наиболее популярной конструкцией для промышленного получения электрической энергии являются ветряки крыльчатого типа. Они позволяют вырабатывать больше энергии, но, при этом, роторные конструкции издают меньше шума и не так сильно зависят от направления ветра.

Принцип работы

Все современные ветряки работают по проверенному веками принципу ветряной мельницы. Только в данном случае энергия вращения лопастей передается не на механический привод, а на генератор, при вращении ротора которого вырабатывается электричество. Затем электроэнергия накапливается в блоке аккумуляторных батарей и через инвертор передается к потребителям. Для обеспечения электроснабжения большого количества потребителей требуется объединение ветряков в единую сеть.

Для изготовления ветряка применены следующие элементы:

  • Лопасти;
  • Ротор турбины;
  • Редуктор;
  • Контроллер;
  • Ось электрического генератора;
  • Генератор
  • Инвертор;
  • Аккумулятор.

Для изготовления пропеллера можно использовать практически любые материалы, обеспечивающие достаточную парусность. Это может быть парусный ветряк из прочной ткани, ветряк из бочки или пластиковых бутылок. При изготовлении миниатюрной установки ветряк можно сделать даже из бумаги.

При изготовлении ветряка своими руками можно использовать ротор из шуруповерта или двигатель от любой бытовой техники. Для изготовления самодельного генератора для ветряка подойдет шаговый двигатель от принтера, а автомобильный генератор можно использовать практически без переделки.

Электрическая схема генератора на шаговом двигателе

С появлением на российском рынке неодимовых магнитов, популярность приобрела схема изготовления низкооборотистого аксиального генератора для ветряка на этих магнитах.

Подключение ветряка к генератору

При изготовлении своими руками ветряка мощностью до 3 кВт и рабочим напряжением 220В можно воспользоваться идеей разработки российской компании Аэрогрин. В конструкции данного ветряка применен принцип роторной авиационной турбины. В качестве лопастей используются небольшие лопатки из полимерных материалов. Вся конструкция укрыта кожухом из звукопоглощающего материала. Такой ветряк не тратит энергию на поиск ветра, создает минимум шума и не раздражает соседей постоянно вращающимися лопастями.

Сколько стоит ветряк

Для того чтобы купить ВЭС заводского производства в России можно сравнить цены на ветряки для выработки электроэнергии от различных производителей. Лучше всего для этого указать в запросе поисковой системы свой регион, это позволит быстрее найти поставщиков, которые работают ближе к планируемому месту установки ветряка и сэкономить на доставке и установке. Например, при необходимости организовать электроснабжение дачи в Ленинградской области, в поисковой строке можно набрать следующий запрос: «купить ветряк для частного дома цена СПб».

Приобрести можно как комплекс целиком, так и отдельные детали. Если лопасти и ротор можно изготовить самостоятельно, то генератор для ветряка можно купить по сравнительно низким ценам.

Выбор конструкции ветрогенератора

Основной проблемой при выборе конструкции ветряка является выбор между ветряками с горизонтальной и вертикальной осью вращения. Однозначного ответа на вопрос, какой ветряк лучше горизонтальный или вертикальный, не существует.

Классический ветрогенератор имеет горизонтальную ось вращения и механизм поиска ветра, работающий по принципу флюгера. Для его раскручивания необходим ветер, дующий со скоростью 7 – 8 м/с.

Читайте также:  Как_можно_обогреть_дом_без_газа

Тогда как спиралевидные ветряки с вертикальной осью вращения не так сильно зависят от скорости и направления ветра.

Но самое широкое распространения ВЭС получили на территории Крымского полуострова. В силу своего географического положения Крым имеет возможность использовать энергию ветра с максимальной пользой. Ветряки в Крыму расположены практически везде, где позволяет местность. Здесь расположено несколько крупных ветряных электростанций. На самой крупной из них работают 127 ветрогенераторов.

В прошлом году в Ульяновске был запущен комплекс из 14 ветряков общей мощностью более 30МВт. Строительство ветряной электростанции начато и в республике Адыгея. Планируется, что ветряки, установленные в Адыгее, будут давать мощность в 150МВт.

Также в прошлом году начало свою работу совместное российско-испанское предприятие по выпуску ветряков в Таганроге. Производство организовано на заводе «Красный котельщик».

Ветряки в Европе

Для многих европейских стран наличие ветряков в некоторых регионах уже давно стало привычным делом. Причем устанавливают их не только на суше но и в море.

Лидерами по производству и использованию ветряков являются Франция, Германия и скандинавские страны.

В последнее время в европейских странах построено множество гигантских ветряков. Например, одним из крупнейших ветряков в Германии является огромная башня высотой 120м с ротором, каждая из трех лопастей которого имеет длину 52 м, ширину 6 м и весит 20 т. Это гигантское сооружение построено под Магдебургом в 2002 году и его мощность составляет 4,5 МВт.

На данный момент самым большим в мире ветряком считается ветрогенератор мощностью 7 МВт и высотой 141 м, расположенный рядом с немецким городом Эмден. Но в ближайшее время в Норвегии планируется запуск ветряка высотой 162 м, который сможет обеспечить электроэнергией около 2000 домов.

Ветроэнергетика

Ветроэнергетика – это направление альтернативной энергетики, основанной на использовании возобновляемого источника энергии, которым является ветер. Кроме этого, в соответствии с состоянием развития на текущий момент и количеством производимой энергии, ветроэнергетика является отдельной отраслью производства различных видов энергии, таких как: электрическая, механическая, тепловая и т. д. Во всех случаях первичным источником служит кинетическая энергия ветра, путем использования различных механизмов, преобразуемая в требуемый вид энергии.

Ветроэнергетика в России

С начала ХХ века, с постепенным внедрением электричества в повседневную жизнь человека, использование ветровых установок было одним из способов получения электрической энергии. В разные годы эта отрасль переживала взлеты и падения, вызванные состоянием экономики страны, успехами в развитии технических устройств и потребностью в источниках энергии.

Россия – это большая страна, и благодаря своей значительной площади, а также расположением в различных географических и климатических зонах, обладает огромным потенциалом использования ветровой энергии. По данным экспертов, потенциал оценивается в более, чем в 50000 млрд.кВт.час электрической энергии в год, что может составлять до 30% производимой электроэнергии энергосистемой страны.

Возможность использования энергии ветра, в различных регионах, можно оценить, посмотрев на карту ветровых зон:

Из приведенной карты видно, что потенциально, использование ветровых установок, возможно на значительной территории страны. Наиболее благоприятные районы, это: прибрежные территории северных, Черного, Каспийского и Азовского морей, полуостров Камчатка, остов Сахалин, внутренняя территория страны от Волги и Дона, до Карелии, Алтая и Тувы.

В настоящее время развитию ветроэнергетики уделяется повышенной внимание, поэтому в последние годы, наблюдается динамика роста по вводу в эксплуатации энергетических мощностей, что видно из приведенной ниже диаграммы:

Использование ветровых генераторов, в разных регионах страны, получило неравномерное распространение, что обусловлено наличием определенных погодных условий, различных технических и финансовых возможностей регионов, а также потребностью в электрической энергии.

Так присутствие ветроэнергетических компаний в различных регионах выглядит следующим образом:

Суммарная установленная мощность ветровых электростанций составляет более 75,0 МВт, наиболее крупные это:

Расположенные в Крыму:

  • Донузлавская ВЭС, мощность установленных генераторов составляет 18,7 МВт;
  • Останинская ВЭС, мощность установленных генераторов составляет 26,0 МВт;
  • Тарханкутская ВЭС, мощность установленных генераторов составляет 15,9 МВт;
  • Восточно-Крымская ВЭС, мощность установленных генераторов составляет 2,8 МВт.
  • В Калининградской области, Зеленоградская ВЭУ, мощность установленных генераторов составляет 5,1 МВт;
  • На Чукотке, Анадырская ВЭС, мощность установленных генераторов составляет 2,5 МВт;
  • В Республике Башкортостан, ВЭС «Тюпкильды», мощность установленных генераторов составляет 2,2 МВт;
  • В республике Калмыкия, ВЭС компании ООО «АЛТЭН», мощность установленных генераторов составляет 2,4 МВт;
  • В Мурманской области, ветродизельная электростанция, на мысе Сеть-Наволок, мощность установленных генераторов составляет 0,1 МВт;
  • На острове Беринга Командорских островов, ВЭС, мощностью установленных генераторов 1,2 МВт.

В различной стадии строительства, подготовки исходных данных и разработки технической документации, находятся следующие станции:

  • Заполярная ВДЭС (3,0 МВт) и Новиковская ВЭС (10,0 МВт) в Республике Коми;
  • Ленинградская ВЭС (75,0 МВт), в Ленинградской области;
  • Ейская ВЭС (72,0 МВт), Анапская ВЭС (5,0 МВт) и Новороссийская ВЭС (5,0 МВт), в Краснодарском крае;
  • Морская ВЭС (50,0 МВт), в Калининградской области;
  • Морская ВЭС (30,0 МВт) и Валаамская ВЭС (4,0 МВт) в Республике Карелия;
  • Приморская ВЭС (30,0 МВт), в Приморском крае;
  • Магаданская ВЭС (30,0 МВт), в Магаданской области;
  • Чуйская ВЭС (24,0 МВт), в Республике Алтай;
  • Усть-Камчатская ВДЭС (16,0 МВт), в Камчатской области;
  • Дагестанская ВЭС (6,0 МВт), в Дагестане;
  • Приютненская ВЭС (51,0 МВт), в Республике Калмыкия.

Государство уделяет внимание на развитие альтернативных источников энергии, принимаются программы по поддержке и стимулирования этой отрасли энергетики на федеральном и региональных уровнях.
В стране появляются новые организации, которые занимаются ветроэнергетикой, создаются отечественные образцы ветровых установок различной мощности и конструкций.

Ветроэнергетика в Мире

Технически развитые страны также не обходят своим вниманием альтернативные источники энергии. За последние годы, доля ветроэнергетики, в общем количестве вырабатываемой электрической энергии, в разных странах, на разных континентах, постоянно увеличивается, что видно на приведенной ниже диаграмме:

В странах Европы, Китае и США, правительства уделяют большое внимание этой отрасли энергетики. Предприятия, работающие в данной сфере, получают различные льготы, им оказывается финансовая помощь.

Лидером, среди европейских стран, по использованию ветровых установок, является Германия, за ней идет Испания и Дания. Распределение мощностей, в процентном соотношении, среди стран, приведено на ниже следующей диаграмме.

Читайте также:  Простой_рецепт_хреновины_из_помидор_и_хрена

В настоящее время, наиболее крупные ветровые установки, работают в странах Европы, это:

  1. В Германии:
    Ветряные электростанции Германии производят более 8,0 % от всей произведённой электроэнергии. Установленная мощность ветровых генераторов превышает 45000,0 МВт.
  2. В Испании:
    Ветроэнергетика в Испании широко распространена как в частном секторе, так и при промышленном производстве электрической энергии. Доля производимого электричества ветровыми генераторами составляет более 20% от общего количества производимой электрической энергии.
  3. В Дании:
    Дания является первопроходцем, в деле использования энергии ветра для получения электрической энергии в промышленных масштабах. История ветроэнергетики этой страны начиналась в 70-х годах ХХ века, и по настоящее время, Дания является лидером по производству ветровых генераторов и их комплектующих.
    Ветроэнергетика Дании производит более 40% электрической энергии в общей доле производимого электричества в стране.

Если посмотреть на карту ветряных электростанций Европы, составленная агентством SETIS при Еврокомиссии, приведенную ниже, то отчетливо видно, что Германия является несомненным лидером из европейских стран, по количеству ветровых генераторов (места установки помечены синими кружками).
Из смонтированных в Европе, наиболее крупной является ветряная ферма Уитли (Whitelee). Она смонтирована в Шотландии и состоит из 140 турбин.

В прочих государствах нашей планеты использование ветровых установок выглядит следующим образом:

  • В США:
    В этой стране, ветроэнергетика как отрасль, развивается довольно быстро. Установленная мощность ветровых генераторов составляет более 75,0 ГВт. В общей доле вырабатываемой электрической энергии, доля ветроэнергетики составляет более 5,0 %.

Ветровые электростанции построены в 34 штатах, из наиболее энергоемкие, это в таких штатах как:

  1. Техас – установленная мощность ветровых генераторов более 14000,00 МВт;
  2. Калифорния и Айова – установленная мощность ветровых генераторов более 5000,00 МВт;
  3. Оклахома, Иллинойс, Орегон, Вашингтон, Миннесота – установленная мощность ветровых генераторов более 3000,00 МВт;
  4. Канзас и Колорадо – установленная мощность ветровых генераторов более 2000,00 МВт.
  5. Наиболее крупная станция Сан Горгонио Пасс, расположена в Калифорнии, способна вырабатывать более 600,0 МВ электрической энергии, в ее состав входит 3218 турбин.
    Построено более 50 заводов по производству ветровых установок и их комплектующих.
  • В Китае:
    Промышленный рост не обошел стороной и ветроэнергетическую отрасль Китая. В настоящее время, установленная мощность ветровых генераторов составляет более 150,0 ГВт. В доле производимой электрической энергии в стране, доля ветроэнергетики составляет более 3,0 %. Энергетики Китая продолжают строительство новых ветровых электростанций, в период до 2020 года, планируется запустить в работу еще 100 ГВт электрических мощностей.
    Наибольшим потенциалом обладают провинции Внутренняя Монголия и Синьцзян-Уйгурский автономный район.
  • В Канаде:
    Благодаря своему географическому расположению Канада имеет огромный потенциал в сфере развития ветроэнергетики. Ветровые генераторы успешно работают во всех провинциях страны. Доля производимой электрической энергии ветровыми установками, в общем количестве электричества, составляет более 1,0 %.
    Установленная мощность ветровых генераторов составляет более 2000,0 МВт.
  • В Индии:
    Индия также является одним из лидеров в использовании ветра для производства электрической энергии. Установленная мощность ветровых генераторов превышает 27000,0 МВт. Доля электроэнергии, вырабатываемая ветровыми генераторами, превысила 6,0 % от общего количества производимой электрической энергии в стране.

Перспективы развития

Принимая во внимание, что традиционные источники энергии имеют свойство заканчиваться, а их использование приводит к загрязнению атмосферы планеты, то все большее количество стран, принимают внутренние и межгосударственные соглашения о защите экологии и контролю за потреблением энергоресурсов. В развитие этой тенденции, использование возобновляемых источников энергии, к тому же являющихся экологическими чистыми, является очень актуальным.

Для стимулирования развития отрасли, в ряде стран разработаны направления деятельности, в этой области энергетики, это:

  1. Развитие морских ветропарков;
  2. Мотивация населения и промышленности в установке ветровых генераторов;
  3. Наращивание процента ветровой энергетики в общем энергопотреблении.

В связи с этим, развитие ветроэнергетики, как источника альтернативной энергии, постоянно продолжается и будет иметь тенденцию к ускорению этого процесса. Ярким примером таких разработок являются плавающие и парящие ветровые генераторы.

Плавающие ветровые генераторы – монтируются вдали от берега, на глубине 100 и более метров. Первые подобные устройства, были смонтированы в 2007 году, в Норвегии. В связи с тем, сто на поверхности моря всегда, за редким исключением бывает полный штиль, присутствует движение воздушных масс, то КПД установок смонтированных подобных образом, выше, чем у монтируемых на поверхности земли.

Парящие ветровые генераторы – представляют из себя надувную сферу, наполненную гелием, и турбины, расположенной по центру устройства.
К тому же конструкторы и разработчики не останавливаются на достигнутом, работы продолжаются в постоянном режиме.

Плюсы и минусы

К достоинствам, использования ветровых установок можно отнести следующие:

  • Это неисчерпаемый, возобновляемый самой природой, источник энергии, потому как пока светит солнце, будет и движение воздушных потоков, которые и являются первичной силой, благодаря которой, производится электрическая энергия.
  • Производство энергии при помощи воздушных масс, это экологически чистый процесс, не наносящий вреда окружающей среде.
  • Строительство объектов ветроэнергетики – это непродолжительное по времени мероприятие, поэтому быстрый монтаж ветровых установок, определяет относительно невысокую стоимость монтажных работ, в сравнении со строительством прочих объектов энергетики.

К недостаткам ветроэнергетики относятся:

  • КПД установок, в своей работе использующих энергию ветра, зависит от географического месторасположения, погодных условий, сезона и времени суток. Этот недостаток определяет возможность использования ветровых генераторов в том либо ином регионе планеты.
  • При устройстве генерирующих установок большой мощности, требуются значительные земельный участки, которые приходится выводить из общего оборота земель.
  • Потребность в начальных значительных затратах, наличие которых подразумевает инвестирование данной отрасли, на начальном этапе развития.
  • Потенциальная опасность для птиц и прочих летающих организмов.

Наличие отрицательных качеств, которыми обладает ветроэнергетика, не может перевесить количество положительных. С уверенностью можно констатировать, что такая область энергетики, как ветроэнергетика, будет развиваться и в дальнейшем.

Вероятно, Вам также понравятся следующие материалы:Ветряная турбина

Спасибо, что дочитали до конца! Не забывайте подписываться на канал, Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.

Ссылка на основную публикацию
Adblock detector