Электронные_лампы_диод_триод

Электронные_лампы_диод_триод

Электронные лампы диод триод

Принцип действия термионных (электровакуумных) диодов был открыт британским учёным Фредериком Гутри в 1873 году.

Устройство

Электровакуумный диод представляет собой стеклянный или металлический баллон, из которого откачан воздух и внутри которого находятся катод и анод. От этих электродов сквозь стенки баллона проходят выводы. Если баллон стеклянный, то выводы впаиваются в стекло. Если же баллон металлический, то выводы выходят через стеклянные или керамические бусинки, впаянные в металл.

Анод имеет один вывод. В зависимости от конструкции выделяют катоды прямого накала и подогревные катоды. Катод прямого накала греется за счёт проходящего через него тока имеет два вывода. Для подогревного катода (который греется за счет близко расположенной нити накала) делают два вывода от подогревающей нити и один от, собственно, катода.

В практических конструкциях диодов анод обычно имеет форму цилиндра или коробки без двух стенок (часто с закругленными углами), окружающей катод. В последнем случае нить имеет вид латинской буквы V или W. При таких конструкциях анодов все излучаемые катодами электроны с одинаковой силой притягиваются анодами.

Для уменьшения нагрева анода его часто снабжают рёбрами или крылышками, которые способствуют лучшему отводу от него тепла.

Принцип работы

При разогреве катода электроны начнут покидать поверхность последнего за счёт термоэлектронной эмиссии. Покинувшие поверхность электроны будут препятствовать вылету других электронов, в результате вокруг катода образуется своего рода облако электронов. Часть электронов с наименьшими скоростями из облака падает обратно на катод. При заданной температуре катода облако стабилизируется: на катод падает столько же электронов, сколько из него вылетает.

При подаче на катод отрицательного напряжения, а на анод — положительного возникает электрическое поле, которое заставляет электроны двигаться от катода к аноду. Тем самым в цепи появляется ток.

Если же на катод подан «+», а на анод «-», электрическое поле препятствует движению электронов, которые покидают катод и ток не течёт.

Вольт-амперная характеристика электровакуумнуго диода имеет 3 участка:

  1. Нелинейный участок. На начальном участке ВАХ ток медленно возрастает при увеличении напряжения на аноде, что объясняется противодействием полю анода объёмного отрицательного заряда электронного облака. По сравнению с током насыщения, анодный ток при Ua = 0 очень мал (и не показан на схеме). Его зависимость от напряжения растет экспоненциально, что обуславливается разбросом начальных скоростей электронов. Для полного прекращения анодного тока необходимо приложить некоторое анодное напряжение меньше нуля, называемое запирающим.
  2. Участок закона «трех вторых». Зависимость анодного тока от напряжения характеризуется законом Ленгмюра-Чайльда-Богуславского (так же называемым законом "трех вторых")
  3. Участок насыщения. При дальнейшем увеличении напряжения на аноде рост тока замедляется, а затем полностью прекращается так как все электроны, вылетающие из катода, достигают анода. Дальнейшее увеличение анодного тока при данной величине накала невозможно, поскольку для этого нужны дополнительные электроны, а их взять негде, так как вся эмиссия катода исчерпана. Установившейся в этом режиме анодный ток называется током насыщения. Этот участок описывается законом Ричардсона-Дешмана.

, где — универсальная термоэлектронная постоянная Зоммерфельда.

ВАХ анода зависит от напряжения накала — чем больше накал, тем больше крутизна ВАХ и тем больше ток насыщения. Однако увеличение напряжения накала приводит к уменьшению срока службы лампы.

Основные параметры

К основным параметрам электровакуумнуго диода относятся:

  • Крутизна ВАХ: — изменение анодного тока в мА на 1 В изменения напряжения.
  • Дифференциальное сопротивление:
  • Максимально допустимое обратное напряжение. При некотором напряжении, приложенном в обратном направлении (тоесть изменена полярность катода и анода), происходит пробой диода — проскакивает искра между катодом и анодом, что сопровождается резким возростанием силы тока.
  • Запирающее напряжение — напряжение, необходимое для прекращения тока в диоде.
  • Максимально допустимая рассеиваемая мощность.

Крутизна и внутреннее сопротивление являются функциями от анодного напряжения и температуры катода, в пределах участка «трех вторых» они являются постоянными.

Читайте также:  Покраска_стен_в_полоску_фото

Маркировка приборов

Электровакуумные диоды маркируются по такому принципу, как и остальные лампы:

  1. Первое число обозначает напряжение накала, округлённое до целого.
  2. Второй символ обозначает тип электровакуумного прибора. Для диодов:
    • Д — одинарный диод.
    • Ц — кенотрон (выпрямительный диод)
    • X — двойной диод, то есть содержащий два диода в одном корпусе с общим накалом.
      • МХ — механотрон-двойной диод
      • МУХ — механотрон-двойной диод для измерения углов
      • Следующее число — это порядковый номер разработки прибора.
      • И последний символ — конструктивное выполнение прибора:
        • С — стеклянный баллон диаметром более 24 мм без цоколя либо с октальным (восьмиштырьковым) пластмассовым цоколем с ключом.
        • П — пальчиковые лампы (стеклянный баллон диаметром 19 или 22,5 мм с жёсткими штыревыми выводами без цоколя).
        • Б — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 10мм.
        • А — миниатюрная серия с гибкими выводами и с диаметром корпуса менее 6мм.
        • К — серия ламп в керамическом корпусе.

        Если четвертый элемент отсутствует, то это говорит о присутствии металлического корпуса!

        Сравнение с полупроводниковыми диодами

        По сравнению с полупроводниковыми диодами в электровакуумных диодах отсутствует обратный ток, и они выдерживают более высокие напряжения. Способны кратковременно выдерживать большие перегрузки (полупроводниковые «выгорают» сразу). Стойки к ионизирующим излучениям. Однако они обладают гораздо большими размерами и меньшим КПД.

        Литература

        1. Клейнер Э. Ю. Основы теории электронных ламп. — М., 1974.
        2. Электронные приборы: Учебник для вузов/В. Н. Дулин, Н. А. Аваев, В. П. Демин и др.; Под ред. Г. Г. Шишкина. — М.: Энергоатомиздат, 1989. — 496 с.
        3. Физический энциклопедический словарь. Том 5, М. 1966, «Советская энциклопедия»
        Пассивные твердотельные Резистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Индуктивность · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
        Активные твердотельные Диод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
        Транзистор · Биполярный транзистор · Полевой транзистор · КМОП-транзистор · Однопереходный транзистор · Фототранзистор · Составной транзистор
        Интегральная схема · Цифровая интегральная схема · Аналоговая интегральная схема
        Тиристор · Симистор · Динистор
        Пассивные вакуумные Бареттер
        Активные вакуумные и газоразрядные Электронная лампа · Электровакуумный диод · Триод · Тетрод · Пентод · Механотрон · Клистрон · Магнетрон · Амплитрон · Платинотрон · Электронно-лучевая трубка · Лампа бегущей волны
        Устройства отображения Электронно-лучевая трубка · ЖК монитор · Светодиод · Газоразрядный индикатор · Флажковый индикатор · Семисегментный индикатор
        Акустические устройства и датчики Микрофон · Динамик · Тензорезистор · Пьезокерамический излучатель
        Термоэлектрические устройства Термистор · Термопара · Элемент Пельтье

        Wikimedia Foundation . 2010 .

        Смотреть что такое "Диод (электронная лампа)" в других словарях:

        ЭЛЕКТРОННАЯ ЛАМПА — электровакуумный прибор с несколькими электродами (диод, триод, тетрод, пентод и т. д.), в котором создается поток электронов, движущихся в вакууме, и осуществляется управление этим потоком. По выходной мощности электронные лампы подразделяются… … Большой Энциклопедический словарь

        электронная лампа — электровакуумный прибор, в котором создаётся поток электронов, движущихся в вакууме, и осуществляется управление этим потоком с помощью одного или нескольких электродов. Их действие основано на явлении термоэлектронной эмиссии (испускании… … Энциклопедия техники

        Электронная лампа — Российская экспортная радиолампа 6550C Электронная лампа, радиолампа электровакуумный прибор (точнее, вакуумный электронный прибор), работающий за счёт управления интенсивностью потока электронов, движущихся в вакуу … Википедия

        электронная лампа — электровакуумный прибор с несколькими электродами (диод, триод, тетрод, пентод и т. д.), в котором создаётся поток электронов, движущихся в вакууме, и осуществляется управление этим потоком. Электронная лампа предназначены для усиления, модуляции … Энциклопедический словарь

        Электронная лампа — электровакуумный прибор (См. Электровакуумные приборы), действие которого основано на изменении потока электронов (отбираемых от катода и движущихся в вакууме) электрическим полем, формируемым с помощью электродов. В зависимости от… … Большая советская энциклопедия

        Читайте также:  Эпилятор_с_бритвенной_насадкой

        ЭЛЕКТРОННАЯ ЛАМПА — электровакуумный прибор с неск. электродами (диод, триод, тетрод, пентод и т.д.), в к ром создаётся поток электронов, движущихся в вакууме, и осуществляется управление этим потоком. Э.л. предназначены для усиления, модуляции, детектирования,… … Естествознание. Энциклопедический словарь

        Лампа бегущей волны — … Википедия

        диод — см. в ст. Электронная лампа. Энциклопедия «Техника». М.: Росмэн. 2006 … Энциклопедия техники

        Электронная схема — Интегральная схема Intel 8742, 8 ми битный микроконтроллер, включающий в себя ЦПУ, 128 байт RAM … Википедия

        Диод — У этого термина существуют и другие значения, см. Диод (значения). Четыре диода и диодный мост. Диод (от др. греч … Википедия

        Триод: подробно простым языком

        Триод — электронная лампа с тремя элементами, которыми являются: катод, анод и управляющая сетка. Управляющей сеткой является тонкий металлический провод, обычно никель, молибден или железо, который окружает катод.

        Схема триода в разрезе

        Принцип действия триода

        Когда триод проводит ток, электроны, двигаясь от катоду к аноду, вынуждены проходить через отверстия в управляющей сетке. Посредством подачи небольшого отрицательного потенциала на управляющую сетку через ножку на основании лампы, можно управлять количеством электронов, пролетающих от катода к аноду. Отрицательный потенциал, подведенный к сетке управления отталкивает часть электронов, но остальные проходят через открытое пространство между проводами и движутся к аноду. Таким образом, протекание тока через лампу и внешнюю цепь может управляться отрицательным потенциалом, поданным на сетку управления.

        Источником питания лампы является источник постоянного тока. Источник постоянного тока подсоединен к катоду и аноду так, что анод имеет положительный потенциал по отношению к катоду.

        В то время, когда переменное напряжение на входе сетки проходит через свой положительный полупериод, напряжение на сетке управления становится менее отрицательным по сравнению в катодом, так как положительное входное напряжение вычитается с отрицательного потенциала сетки управления. В результате отрицательный потенциал на сетке управления уменьшается, и большее количество электронов освобождается из пространственного заряда и движется через сетку к аноду. Протекание тока через лампу усиливается.

        Протекание тока в триоде

        В то время, когда входное напряжение переменного тока на сетке проходит через свой отрицательный полупериод, напряжение на сетке становится более отрицательным по сравнению с катодом, потому что оно складывается с предыдущим отрицательным потенциалом на сетке. Поэтому, очень малое количество электронов покидают пространственный заряд, что уменьшает количество электронов, движущихся к аноду. Ток через лампу уменьшается.

        Электронные лампы диод триод

        Наши партнеры

        Первые электронные лампы, или радиолампы, как их иногда называют, были очень похожи на электрические лампы накаливания (см. Источники света). Они имели прозрачные стеклянные баллоны такой же формы, а их нити накала ярко светились.

        Еще в конце прошлого века известный американский изобретатель Т. А. Эдисон обнаружил, что раскаленная нить обычной лампы испускает, большое количество свободных электронов. Это явление, получившее название термоэлектронной эмиссии, широко используется во всех электронных лампах.

        Любая электронная лампа представляет собой металлический, стеклянный или керамический баллон, внутри которого укреплены электроды (см. рис.). В баллоне создается сильное разрежение воздуха (вакуум), которое необходимо для того, чтобы газы не мешали движению электронов в лампе и чтобы электроды служили дольше. Катод — отрицательный электрод — является источником электронов. В одних лампах роль катода выполняет нить накала, в других нить служит миниатюрной электроплиткой, нагревающей трубчатый катод. Анод — положительный электрод — обычно имеет форму цилиндра или коробки без двух стенок, он окружает катод.

        Все названия электронных ламп связаны с числом электродов: диод имеет два электрода, триод — три, тетрод — четыре, пентод — пять и т. д.

        Читайте также:  Водостойкая_столешница_для_ванной

        До наших дней остался неизменным принцип действия первой электронной лампы — диода, изобретенного англичанином Флемингом в 1904 г. Основные элементы этой простейшей лампы — катод и анод. Из раскаленного катода вылетают электроны и образуют вокруг него электронное . Если катод соединить с источника питания, а на анод подать , внутри диода возникает ток (анод начнет притягивать к себе электроны из ). Если же на анод подать , а на катод — , ток в цепи диода прекратится. Таким образом, в двух-электродной лампе — диоде ток может идти только в одном направлении — от катода к аноду, т. е. диод обладает односторонней проводимостью тока.

        Диод использовали для выпрямления переменного тока (см. Электрический ток). В 1906 г. американский инженер Ли де Форест предложил ввести между анодом и катодом лампы диода еще один электрод — сетку. Появилась новая лампа — триод, неизмеримо расширившая область использования электронных ламп (см. рис.).

        Двухэлектродная лампа — диод

        Работа триода, как и всякой электронной лампы, основана на существовании потока электронов между катодом и анодом. Сетка — третий электрод — имеет вид проволочной спирали. Она находится ближе к катоду, чем к аноду. Если на сетку подать небольшое отрицательное напряжение, она будет отталкивать часть электронов, летящих от катода к аноду, и сила анодного тока уменьшится. При большом отрицательном напряжении сетка становится непреодолимым барьером для электронов. Они задерживаются в пространстве между катодом и сеткой, несмотря на то что к катоду приложен , а к аноду — источника питания. При положительном напряжении на сетке она будет усиливать анодный ток. Таким образом, подавая различное напряжение на сетку, можно управлять силой анодного тока лампы. Даже незначительные изменения напряжения между сеткой и катодом приведут к значительному изменению силы анодного тока, а следовательно, и к изменению напряжения на нагрузке (например, резисторе), включенной в цепь анода. Если на сетку подать переменное напряжение, то за счет энергии источника питания лампа усилит это напряжение. Происходит это потому, что при переменном напряжении между сеткой и катодом постоянный ток в нагрузке лампы изменяется в такт с этим напряжением, причем в значительно большей степени, чем изменяется напряжение на сетке. Если этот ток пропустить через фильтр верхних частот (см. Фильтр электрический), то на его выходе потечет переменный ток с большей амплитудой колебаний, а на нагрузке появится большее переменное напряжение.

        Трехэлектродная лампа — триод

        В дальнейшем конструкции электронных ламп развивались очень быстро — появились лампы, содержащие не одну, а несколько сеток: тетроды (лампы с двумя сетками) и пентоды (лампы с тремя сетками). Они позволили получить большее усиление сигналов.

        Виды электронных ламп

        Триоды, тетроды и пентоды — универсальные электронные лампы. Их применяют для усиления напряжения переменного и постоянного токов, для работы в качестве детекторов и в качестве генераторов электрических колебаний. Широкое распространение получили комбинированные лампы, в баллонах которых имеются по две или даже по три электронные лампы. Это, например, диод-пентод, двойной триод, триод-пентод. Они могут, в частности, работать в качестве детектора (диод) и одновременно усиливать напряжение (пентод).

        Электронные лампы для аппаратуры малой мощности (радиоприемников, телевизоров и т. д.) имеют небольшие размеры. Существуют даже сверхминиатюрные лампы, диаметр которых не превышает толщины карандаша. Полную противоположность миниатюрным лампам представляют лампы, применяемые в мощных усилителях радиоузлов или радиопередатчиках. Эти электронные лампы могут генерировать высокочастотные колебания мощностью в сотни киловатт и достигать значительных размеров. Из-за огромного количества выделяющегося тепла приходится применять воздушное или водяное охлаждение этих ламп (см. рис.).

        МСредства для вагонов

        МСредства для вагонов

        Химия для катеров

        Химия для катеров

        Ультразвуковая очистка

        Ультразвуковая очистка

        Ультразвуковая очистка

        Ссылка на основную публикацию
        Adblock detector