Как_проверить_теплообменник_в_газовом_котле

Как_проверить_теплообменник_в_газовом_котле

Котел Vaillant ATMOTEC PLUS отапливает секцию таунхауса моего друга. Стала часто происходить ситуация, при которой наполняя ванну в определенный момент котел уходит в ошибку, соответственно перестает греть воду. Код ошибки сам не наблюдал, со слов владельца – перечеркнутый кран на дисплее, восстанавливал работу перезапуском котла.

Учитывая возраст котла более семи лет, который предположительно ни разу не промывался, однозначно решили, что требуется промыть вторичный теплообменник ГВС от накипи и грязи.

Далее встал вопрос – как мыть. Можно вызвать специалиста обслуживающей организации с бустером и спецжидкостью или промыть самостоятельно в домашних условиях. Так как давно с товарищем не виделись и на выходные предстояли последние матчи чемпионата мира по хоккею, решено было никого не вызывать и прокипятить теплообменник в лимонной кислоте. В конце концов, промыть бустером никогда не поздно.

Слили воду с котла через предохранительный клапан, сняли теплообменник. Наличие в нем загрязнений было визуально очевидно. Для промывки приготовили раствор обычной лимонной кислоты, купленной в магазине – как самый простой и безопасный. На три литра воды высыпали пакетик 80 грамм. Заполняя теплообменник раствором, кипятили в обычной кастрюле три раза и между кипячениями промывали водой. Грязи было много, с одного контура черная, с другого – рыжая с взвесью тяжелых частиц. Только после третьего кипячения грязи стало ощутимо поменьше, решили процедуру завершить. Поставили теплообменник на место, заполнили котел, порадовались, что вода теперь греется ощутимо быстрее и стала гораздо горячее. В целом, процедура прошла успешно.

Все бы хорошо, но через час в отсутствие хозяев под котлом образовалась порядочная лужа. Как выяснилось, котел стал сбрасывать давление через предохранительный клапан. Ввиду того, что опыта решения проблем по гидравлике не было, решили, что котел за время промывки успел остыть, мы его излишне подпитали холодной водой и в результате после нагревания теплоносителя, давление в системе ушло за предел.

Слили с котла воды до значения давления 1.5 бара, дело было к полуночи, поэтому на этом успокоились. С наступлением следующего дня под котлом опять образовалась приличная лужа.

Было очевидно, что после промывки котел стал работать неправильно – в процессе работы наблюдался постоянный рост давления до предельно значения.

Давление расширительного бака

По симптомам, первое, что пришло в голову – проверить давление расширительного бака котла. Как это делается — описывать не буду, можно посмотреть видео. Если в нем нет воздуха, и не происходит компенсации теплового расширения – в системе будут наблюдаться скачки давления, которые приводят к сбросу. Слили воду с котла, проверили давление — значение около 0.6 бар. Не сказать, что малое, но на всякий случай подкачали до 0.8 бар. Еще когда сбрасывали воду с котла, обратили внимание, что давление в котле вдруг само подросло с 1.2 бар до 1.5 бар буквально за несколько минут. При этом, котел не совершал вообще никаких операций. Стало понятно, что происходит постоянная подпитка котла. Кран подпитки закрыт, но котел подпитывается. Медленно, примерно с интервалом 10-15 минут давление в отопительной системе увеличивалось на 0.1 бар.

Изучив гидравлическую схему стало понятно, что “паразитная” подпитка может происходить только в двух местах: кран подпитки и теплообменник, который мыли.

Замена вторичного теплообменника

Проблему решили в итоге установкой подменного теплообменника. По всей видимости, в старом теплообменника был свищ, и возникла точка сообщения двух контуров. Свищ со временем зарос накипью и грязью, а после промывки открылся. Я не претендую на роль эксперта в области физико-химических процессов, происходящих внутри теплообменника, но рискну предположить, что со временем образовавшаяся накипь явилась причиной локальных перегревов внутри и повреждению пластины, но при этом сама же накипь обеспечивала герметичность контура.

Вся эта история натолкнула меня на следующие мысли и рекомендации:

  • Желательно производить промывку теплообменника регулярно. Все зависит, конечно, от качества воды конкретного региона, наличия или отсутствия фильтров грубой очистки и т.д. В местных организациях рекомендуют промывать раз в год перед отопительным сезоном, но не считаю это догмой.
  • Не лишним было бы иметь второй подменный теплообменник, это позволяет произвести замену в любой момент, т.к. при такой неисправности невозможна эксплуатация котла в целом, даже на отопление. Больше справедливо для владельцев больших частных домов.
  • Правильно было бы провести опрессовку теплообменника после промывки (не знаю, делают ли это при промывке в специализированных организациях, я бы сделал). В нашем случае, его можно было элементарно продуть ртом, т.к. свищ был достаточно большой.

Проверка герметичности теплообменника на котле

Проверить герметичность теплообменника на котле можно, перекрыв подачу в котел холодной воды и открыв кран разбора горячей воды. Если система отопления и контур ГВС сообщаются через теплообменник, из крана будет течь вода. В нашем случае этого не происходило — из крана чуть-чуть подкапывало раз в минуту по капле. Возможно, если бы этот тест повторили при давлении в котле более 2 бар, то течь проявилась бы явно. Именно поэтому, вариант негерметичности теплообменника был изначально исключен (как оказалось неправильно).

Проверка крана подпитки Vaillant
Кран подпитки тоже мог являться причиной течи водопроводной воды в систему отопления. Если забраковать теплообменник явно не удалось, то проверить кран подпитки на Vaillant ATMO PLUS можно следующим образом:

Читайте также:  Фонарь_tl40_трофи_схема

  • перекрыть подачу холодной воды в котел
  • кран подпитки должен быть закрыт
  • слить воду с котла через предохранительный клапан
  • открутить медный патрубок, соединяющий кран подпитки с системой отопления котла
  • открыть подачу холодной воды в котел

Если кран подпитки полностью не перекрывает подачу воды в котел – увидите визуально.

Заключение

Данный случай я решил описать, потому что этот опыт может пригодиться, кому то еще в такой ситуации, читать множество страниц форума не всегда удобно и есть на это время. Так же на странице открыты комментарии, в которых можно оставить свои мысли по этому поводу или какие-то дополнения (может быть при написании статьи я допустил ошибку). Конструктивная критика по существу всегда приветствуется!

История одной промывки теплообменника Vaillant : 2 комментария

🙂 вы перестарались с травлением накипи и температурой — прожгли дырочку между камерами . Для прочистки теплообменника необходим стенд промывочный и более щадящая химия.
в ваше оправдание могу сказать, что промывка теплообменника по правилам очищает его на 70% или около того. Операция получается длительная и дорогая. Дешевле и гарантированный результат в замене узла. Есть еще и повод при этом поменять теплообменник на более мощный, с 7 пластин на 19. Увеличивается мощность погорячей воде.
Всем удачных ремонтов.

У котла Vaillant ATMOTEC в памяти сохраняются последние десять кодов ошибок, которые легко просмотреть на дисплее, мучить хозяев не требуется. Промывкой в лимонке без принудительной циркуляции можно восстановить работоспособность лишь временно, к состоянию «нового» приводит лишь бустер с кислотным составом. И по описанным причинам промывка старого теплообменника нередко приводит лишь к излишним тратам и покупке нового. Стоит он не очень дорого и один раз в семь — десять лет можно себе позволить 🙂 Самое главное: проверить герметичность крана подпитки указанным в конце статьи способом в реальной жизни не получится поскольку именно у этой модели котла легко откручиваемая тоненькая трубочка идёт к вводу холодной воды, а второй конец краника подпирает собой обратный клапан не дающий воде из системы отопления сбежать на улицу при отсутствии «воды в кране» и попытке поднять давление! Успехов!

Владельцы патента RU 2344395:

Изобретение относится к средствам испытания на герметичность теплообменной аппаратуры и направлено на повышение точности определения герметичности теплообменников, преимущественно тех, которые работают для нагревания или охлаждения в пищевой промышленности, пивоварении, фармацевтической промышленности. Согласно изобретению предлагается способ обнаружения утечек в теплообменнике, имеющем отдельные каналы для рабочей жидкости и теплообменного флюида, в котором предусматривается введение жидкости обнаружения в один из указанных каналов и создание условий для протекания воздуха через другой из указанных каналов, что побуждает жидкость обнаружения проходить в различных направлениях в указанном одном из каналов, и обнаружение любой жидкости обнаружения, которая просочилась из указанного одного из каналов в указанный другой канал. 8 з.п. ф-лы, 3 ил.

Настоящее изобретение имеет отношение к созданию теплообменников и в нем предлагается усовершенствованный способ обнаружения утечек в теплообменниках и определения местоположения любой обнаруженной утечки.

Настоящее изобретение может быть преимущественно, но не исключительно, использовано с теплообменниками, которые работают для осуществления нагревания или охлаждения в "чистых" средах, таких как пищевая промышленность, производство молочных продуктов, пивоварение и фармацевтическая промышленность.

В патентной заявке WO 01/42756 описан способ обнаружения утечек в пластинчатом теплообменнике, причем указанный способ предусматривает введение гелия в один из каналов теплообменника и использование гелиевой детекторной головки в другом канале, чтобы обнаружить любой гелий, который поступил в другой канал за счет утечки, причем создают поток воздуха через канал, содержащий гелиевую детекторную головку, при этом давление в содержащем гелий канале поддерживают выше, чем в канале, содержащем гелиевую детекторную головку. Этот способ позволяет получать результаты испытаний после короткого периода работы и может быть использован в присутствии воды или другой жидкости. Однако в теплообменнике могут образовываться воздушные карманы в зависимости от геометрии каналов и при некоторых обстоятельствах в зависимости от наличия в них жидкости.

Задачей настоящего изобретения является создание способа, в котором разрешены указанные выше проблемы.

В соответствии с первым аспектом настоящего изобретения предлагается способ обнаружения утечек в теплообменнике, имеющем отдельные каналы для рабочей жидкости и теплообменного флюида соответственно, который предусматривает введение жидкости обнаружения в один из указанных каналов, пропускание жидкости в различных направлениях в указанном одном из каналов, и обнаружение любой жидкости обнаружения, которая просочилась из указанного одного из каналов в указанный другой из каналов.

Способ в соответствии с настоящим изобретением может быть применен как для пластинчатых теплообменников, так и для трубчатых теплообменников.

Жидкость обнаружения преимущественно вводят в один из каналов и создают условия для протекания воздуха через другой из каналов.

Один из каналов, в который вводят жидкость обнаружения, преимущественно представляет собой канал теплообменного флюида, причем обнаружение жидкости обнаружения затем производят в канале рабочей жидкости.

В соответствии с другим вариантом вместо жидкости обнаружения может использоваться газ, который содержит гелий, причем давление в одном из каналов выше, чем в другом из каналов.

Газом, который содержит гелий, может быть чистый гелий, однако настоящее изобретение может быть эффективно использовано с имеющимися в продаже смесями гелия и воздуха, которые являются предпочтительными по экономическим соображениям. Такие смеси обычно имеют концентрации гелия 96-98%, с балансом воздуха.

Читайте также:  Функция_самоочистки_духового_шкафа_bosch_инструкция

Пропускание в различных направлениях содержащего гелий газа в одном из каналов обычно производят в течение нескольких минут, например от 5 до 10 минут в каждом направлении, до тех пор, пока гелий не распределится равномерно по всему указанному каналу, в результате чего будут устранены любые воздушные карманы, которые в противном случае при нахождении в непосредственной близости от утечки будут давать ложные результаты испытаний.

В соответствии с другим аспектом способ преимущественно включает в себя операцию введения флуоресцентного красителя в один из указанных каналов и создание условий для равномерного распределения красителя по всему указанному каналу и после этого инспектирование (обследование) теплообменника со стороны, противоположной той, где находится указанный канал, при помощи реагирующего на флуоресцентный краситель средства обнаружения, для того, чтобы найти источник утечки.

В соответствии с дополнительным аспектом способ следует применять только на таком теплообменнике, в котором уже была обнаружена трещина, перфорация или другая утечка по способу в соответствии с первым аспектом, или при помощи любого другого способа обнаружения утечки. Однако способ в соответствии с дополнительным аспектом может быть использован также и для (первоначального) обнаружения утечек и для нахождения их источника.

В соответствии с альтернативным вариантом жидкость обнаружения содержит флуоресцентный краситель, который сам по себе может быть использован для обнаружения утечек и для нахождения их источника.

В случае введения флуоресцентного красителя в теплообменник теплообменник преимущественно следует предварительно дренировать от любой захваченной воды или от любой другой жидкости. Для этого пластины пластинчатого теплообменника могут быть первоначально разобраны и любая содержащаяся в них жидкость должна быть удалена, после чего теплообменник может быть вновь собран и в него введен флуоресцентный краситель. Циркуляцию флуоресцентного красителя в теплообменнике обычно проводят в течение периода времени от 10 до 25 минут для того, чтобы краситель полностью распределился по всему каналу, преимущественно под давлением от 10 до 25 фунтов на квадратный дюйм. Краситель преимущественно сначала пропускают в одном направлении, а затем — в противоположном направлении, чтобы улучшить или усилить покрытие пластины и получить главным образом 100%-ное покрытие пластины красителем. Краситель может иметь утечку через любые дефекты в пластине за счет капиллярного действия. Распыляемый проявляющий раствор преимущественно может быть использован для продвижения красителя через любые дефекты в пластине. Теплообменник затем может быть вновь разобран и созданы условия для удаления избытка красителя, после чего индивидуальные пластины могут быть подвергнуты анализу со стороны, противоположной той, вдоль которой циркулировал краситель, чтобы найти любые перфорации или трещины. Это может быть произведено с использованием ультрафиолетового (черного) света на номинальной длине волны 365 нм. После этого дефектные пластины могут быть отремонтированы или заменены.

В случае трубчатого теплообменника каждая индивидуальная трубка может быть обработана аналогично описанному выше для пластинчатого теплообменника.

Далее варианты настоящего изобретения будут описаны в качестве примера со ссылкой на сопроводительные чертежи.

На фиг.1 показан пластинчатый теплообменник, приспособленный для испытания на наличие утечек.

На фиг.2 показан трубчатый теплообменник.

На фиг.3 показан пластинчатый теплообменник, приспособленный для пропускания флуоресцентного красителя.

Обратимся сначала к рассмотрению фиг.1, на которой показан пластинчатый теплообменник, обозначенный в общем виде позицией 10, который содержит теплообменные элементы в форме пластин 11, идущих между первичной и вторичной камерами 12, 13 соответственно. Камеры находятся в тесном тепловом контакте друг с другом через пластины, но должны быть изолированы друг от друга для массообмена.

Как это показано на фиг.1, камера 12 может быть предназначена для пропускания теплообменного флюида, а камера 13 может быть предназначена для пропускания рабочей жидкости, которую нагревают или охлаждают, в зависимости от необходимости, при помощи теплообменного флюида, с использованием пластин. Каждая камера имеет впуски и выпуски (на фиг.1 не показаны), предназначенные для введения и выпускания соответствующего флюида.

Камера 12 снабжена трубопроводами 14, 15 и объединенными с ними запорными клапанами 16, 17. Источник 18 газообразного гелия обычно в смеси с воздухом показан подключенным к трубопроводу 14, но вместо этого может быть подключен альтернативно и избирательно к трубопроводу 15 при помощи магистрали 20, в результате чего источник гелия сообщается с одним или другим концом камеры 12. Элементы 12 и 14-20 образуют канал для рабочей жидкости. К камере 13 подключен впуск магистрали 21 сжатого воздуха, подключенной к воздушному компрессору 22; на другом конце камера 13 подключена при помощи магистрали 23 к гелиевой детекторной головке 24, которая разделяет гелий от потока воздуха и измеряет его давление. Элементы 13 и 21-24 образуют канал для теплообменного флюида.

При работе гелий сначала пропускают через камеру 12 при помощи магистрали 19 и трубопровода 14, при этом краны 16 и 17 открыты. После установления потока гелия кран 17 закрывают и гелий продолжают пропускать в течение нескольких минут в камеру 12; затем кран 16 закрывают и кран 17 открывают, и гелий вновь продолжают пропускать в обратном направлении через камеру 16 при помощи магистрали 20 и трубопровода 15. При этом любые воздушные карманы в камере 16 будут ликвидированы и в конечном счете гелий будет равномерно распределен по объему камеры 16. Любые утечки в пластинах 11 будет позволять гелию проходить в камеру 13, где он увлекается в воздушный поток от компрессора 22 и будет обнаружен при помощи головки 24.

Читайте также:  Сколько_весит_шкура_быка

Обратимся теперь к рассмотрению фиг.2, на которой показан трубчатый теплообменник, который имеет внешнюю рубашку 25 и внутреннюю трубку 26 с наконечниками 27, 28. Соединения 29, 30 сообщаются с внутренним пространством рубашки. При работе гелий пропускают через внутреннюю трубку, а воздух пропускают через оболочку и проверяют на наличие гелия, аналогично описанному здесь выше со ссылкой на фиг.1.

На фиг.3 показан пластинчатый теплообменник, который содержит соответствующие камеры 31, 32, соединенные при помощи пластин 33. Источник флуоресцентного красителя содержится в расширителе 34 и его циркуляция через флюидальный контур теплообменника обеспечивается при помощи погружного насоса 35, причем указанный контур обычно содержит теплообменный флюид. Создают условия для циркуляции флуоресцентного красителя, например в течение 30 минут, после чего теплообменник разбирают, с пластин удаляют жидкость и после этого обследуют индивидуальные пластины со стороны рабочей жидкости на наличие флуоресцентного красителя, что свидетельствует о присутствии утечки и указывает ее точное местоположение. Обнаружение любых утечек можно производить в ультрафиолетовом свете, обычно на длине волны 365 нм.

1. Способ обнаружения утечек в теплообменнике, имеющем отдельные каналы для рабочей жидкости и теплообменного флюида, предусматривающий введение жидкости обнаружения в один из указанных каналов, пропускание жидкости обнаружения в различных направлениях в указанном одном из каналов и обнаружение любой жидкости обнаружения, которая просочилась из одного из каналов в другой из каналов.

2. Способ по п.1, в котором жидкость обнаружения вводят в один из каналов и создают условия для протекания воздуха в другом из каналов.

3. Способ по п.1, в котором один из каналов, в который вводят жидкость обнаружения, представляет собой канал теплообменного флюида, причем обнаружение просочившейся жидкости обнаружения производят в канале рабочей жидкости.

4. Способ по п.1, в котором газ обнаружения представляет собой газ, содержащий гелий, причем давление в одном из каналов выше, чем в другом из каналов.

5. Способ по п.4, в котором газ, содержащий гелий, представляет собой смесь гелия и воздуха, при концентрации гелия 96-98%.

6. Способ по п.4, который дополнительно включает в себя операцию введения флуоресцентного красителя в один из указанных каналов и создание условий для полного распределения красителя в указанном канале, и, после этого, операцию обследования теплообменника со стороны, противоположной той, где находился указанный канал, при помощи реагирующего на флуоресцентный краситель средства обнаружения, для того, чтобы найти источник утечки.

7. Способ по п.1, в котором жидкость обнаружения содержит флуоресцентный краситель.

8. Способ по п.7, в котором флуоресцентный краситель обнаруживают с использованием реагирующего на флуоресцентный краситель средства обнаружения.

9. Способ по одному из пп.6-8, в котором теплообменник представляет собой пластинчатый теплообменник, причем теплообменник разбирают после проведения операции распределения красителя, после чего проводят операцию обследования индивидуальных пластин.

Ну кухне установлена газовая колонка, уже весьма не молода. Стала плохо греть воду, поток и температура явно уменьшились. Как проверить, не забился ли теплообменник, вода очень плохая из крана, в чайнике всегда много накипи.

Как проверить не забит ли теплообменник у колонки?

Проверить совсем не сложно, даже разбирать ни чего не надо.

Проверяем напор воды на входе в колонку и на выходе, если на выходе напор слабый, или его вообще почти нет, то это один из симптомов забитого теплообменника.

В очень редких случаях, на входе и кран может барахлить, советую начать с него, а только лишь потом снимать и чистить теплообменник.

Далее, колонка, или не включается, или включается и работает не долгое время, автоматика её отключает.

Вода плохо греется, хотя горелка работает нормально, и это симптом забитого теплообменника.

Вы пишите о накипи, про чайник всё понятно, температура чайника, точнее воды в нём, достигает практически ста градусов при закипании.

Но накипь в колонке это не нормальное явление и жёсткая вода в этом не виновата (Вы о жёсткой воде пишите).

Накипь образуется при температуре в 80-т (чуть меньше, если совсем точно, то при 78-и градусах), зачем Вам такая температура?

Человеческая тело не выдерживает таких температур, 40-42- градуса, вот какой должна быть температура воды на выходе, тогда и накипи никакой не будет.

У Вас получается вот что: или Вы гоняете колонку при низком давлении воды, газ горит на полную, вода на выходе под маленьким давлением и она (вода) практически кипит, или вообще паром выходит из смесителя, вот и получается накипь.

Или Вы постоянно держите фитиль в горящем состоянии, этот так же способствует образованию накипи.

Колонку надо постоянно включать и выключать, постоянно горящий фитиль "убивает" колонку.

Ну и конечно фильтр грубой очистки, на входе, не помешает (фильтр устанавливается между краном и колонкой).

Стала плохо греть воду, поток и температура явно уменьшились.

Судя по симптомам Вашей колонки, теплообменник

Ссылка на основную публикацию
Как_приклеить_ламинат_на_пену
После установки входной двери для завершения ремонта требуется облагородить дверной проем. Для этого могут использоваться различные материалы, одним из вариантов...
Как_правильно_сплинкер_или_спринклер
Как известно, пожар – это одно из худших бедствий, которые могут случиться, так как его последствия крайне редко бывают незначительными....
Как_приклеить_ламинат_на_пену
После установки входной двери для завершения ремонта требуется облагородить дверной проем. Для этого могут использоваться различные материалы, одним из вариантов...
Как_прикрепить_провод_к_стене_без_сверления
Современное жилое здание насыщено большим количеством электротехнической техники, функционирование которой требует подключения к сети напряжением 220 или 380 В, т.е....
Adblock detector