Как_создать_скетч_для_ардуино

Как_создать_скетч_для_ардуино

Arduino довольно сильно основан на C ++ (язык программирования). Этот язык основан на вещах, называемых заголовками, функциями и библиотеками. Эти вещи, фактически, переносятся и используются в Arduino. Как правило библиотеки включаются в самое начало вашего кода и используются для упрощения кода всего проекта, например:

Большинство нужных библиотек вы можете найти на нашем сайте в разделе Библиотеки. В этом уроке мы продемонстрируем, как создать собственную библиотеку для Ардуино.

Шаг 1. Программное обеспечение

Существует много специализированного программного обеспечения, которое вы можете использовать для этого, но ваш основной текстовый редактор — это «Блокнот», которого вполне достаточно для работы.

Вы также можете попробовать что-то вроде Notepad++, VSCode. Мы обычно используем Sublime Text 3 для программирования.

Шаг 2. Код Arduino

Это базовый эскиз Blink для включения встроенного светодиода:

Этот код не очень сложный, и ему вообще не нужна библиотека. Однако, ради демонстрации, мы все равно сделаем это.

Шаг 3. Создание библиотеки

  1. Найдите где расположена папка «библиотеки» (Arduino > Библиотеки / Arduino > Libraries).
  2. Создайте новую папку под названием "MyLibrary", но не оставляйте кавычки.
  3. В папке, которую вы только что создали, создайте новый .txt документ под названием "BlinkLED".
  4. Сохраните файл с расширением .h.
  5. Повторите, но с расширением .cpp.

Код для .h файла:

Код для .cpp файла:

Теперь сохраните оба файла и выйдите.

Шаг 4. Встраивание библиотеки

Закройте Arduino IDE и снова откройте её. Перейдите в:

Sketch > Include Library / Включить Библиотеку

Прокрутите страницу вниз до "Contributed Libraries". Вы должны увидеть одну из них под названием MyLibrary. Нажмите на нее, и вы увидите:

Если появится вышеприведенный код, то это значит мы на правильном пути. Просто загрузите остальную часть кода.

Теперь единственное, что присутствует в loop(), — это функция, которую мы сделали ранее в нашем .cpp-файле. Все, что вам нужно сделать, это указать контакт, к которому подключен ваш светодиод и частоту, с которой вы хотите чтобы он мигал.

Вместо того, чтобы объявить вывод и сказать ему, чтобы он включался и выключался, мы просто используем нашу библиотеку. Все, что вам нужно сделать, это сказать, какой контакт и как часто включать светодиод.

Если вы хотите, чтобы ваша библиотека делала больше, чем просто мигала светодиодом, все, что вам нужно сделать, это отредактировать два файла, которые мы создали ранее. Если вы заинтересованы в создании более сложных библиотек, вам может помочь изучение C++.

В этой статье я решал собрать полное пошаговое руководство для начинающих Arduino. Мы разберем что такое ардуино, что нужно для начала изучения, где скачать и как установить и настроить среду программирования, как устроен и как пользоваться языком программирования и многое другое, что необходимо для создания полноценных сложных устройств на базе семейства этих микроконтроллеров.

Тут я постараюсь дать сжатый минимум для того, что бы вы понимали принципы работы с Arduino. Для более полного погружения в мир программируемых микроконтроллеров обратите внимание на другие разделы и статьи этого сайта. Я буду оставлять ссылки на другие материалы этого сайта для более подробного изучения некоторых аспектов.

Что такое Arduino и для чего оно нужно?

Arduino — это электронный конструктор, который позволяет любому человеку создавать разнообразные электро-механические устройства. Ардуино состоит из программной и аппаратной части. Программная часть включает в себя среду разработки (программа для написания и отладки прошивок), множество готовых и удобных библиотек, упрощенный язык программирования. Аппаратная часть включает в себя большую линейку микроконтроллеров и готовых модулей для них. Благодаря этому, работать с Arduino очень просто!

С помощью ардуино можно обучаться программированию, электротехнике и механике. Но это не просто обучающий конструктор. На его основе вы сможете сделать действительно полезные устройства.
Начиная с простых мигалок, метеостанций, систем автоматизации и заканчивая системой умного дома, ЧПУ станками и беспилотными летательными аппаратами. Возможности не ограничиваются даже вашей фантазией, потому что есть огромное количество инструкций и идей для реализации.

проекты на Arduino

Стартовый набор Arduino

Для того что бы начать изучать Arduino необходимо обзавестись самой платой микроконтроллера и дополнительными деталями. Лучше всего приобрести стартовый набор Ардуино, но можно и самостоятельно подобрать все необходимое. Я советую выбрать набор, потому что это проще и зачастую дешевле. Вот ссылки на лучшие наборы и на отдельные детали, которые обязательно пригодятся вам для изучения:

Базовый набор ардуино для начинающих: Купить
Большой набор для обучения и первых проектов: Купить
Набор дополнительных датчиков и модулей: Купить
Ардуино Уно самая базовая и удобная модель из линейки: Купить
Беспаечная макетная плата для удобного обучения и прототипирования: Купить
Набор проводов с удобными коннекторами: Купить
Комплект светодиодов: Купить
Комплект резисторов: Купить
Кнопки: Купить
Потенциометры: Купить

Среда разработки Arduino IDE

Для написания, отладки и загрузки прошивок необходимо скачать и установить Arduino IDE. Это очень простая и удобная программа. На моем сайте я уже описывал процесс загрузки, установки и настройки среды разработки. Поэтому здесь я просто оставлю ссылки на последнюю версию программы и на статью с подробной инструкцией.

Версия Windows Mac OS X Linux
1.8.2

Язык программирования Ардуино

Когда у вас есть на руках плата микроконтроллера и на компьютере установлена среда разработки, вы можете приступать к написанию своих первых скетчей (прошивок). Для этого необходимо ознакомиться с языком программирования.

Читайте также:  Стеновые_панели_под_покраску_для_внутренней_отделки

Для программирования Arduino используется упрощенная версия языка C++ с предопределенными функциями. Как и в других Cи-подобных языках программирования есть ряд правил написания кода. Вот самые базовые из них:

  • После каждой инструкции необходимо ставить знак точки с запятой (;)
  • Перед объявлением функции необходимо указать тип данных, возвращаемый функцией или void если функция не возвращает значение.
  • Так же необходимо указывать тип данных перед объявлением переменной.
  • Комментарии обозначаются: // Строчный и /* блочный */

Подробнее о типах данных, функциях, переменных, операторах и языковых конструкциях вы можете узнать на странице по программированию Arduino. Вам не нужно заучивать и запоминать всю эту информацию. Вы всегда можете зайти в справочник и посмотреть синтаксис той или иной функции.

Все прошивки для Arduino должны содержать минимум 2 функции. Это setup() и loop().

Функция setup

Функция setup() выполняется в самом начале и только 1 раз сразу после включения или перезагрузки вашего устройства. Обычно в этой функции декларируют режимы пинов, открывают необходимые протоколы связи, устанавливают соединения с дополнительными модулями и настраивают подключенные библиотеки. Если для вашей прошивки ничего подобного делать не нужно, то функция все равно должна быть объявлена. Вот стандартный пример функции setup():

Arduino представляет собой плату с микроконтроллером, которую вы можете программировать, чтобы управлять внешними устройствами. Он взаимодействует с внешним миром через датчики, двигатели, светодиоды, динамики. и даже Интернет, что делает его гибкой платформой для разных проектов. Есть довольно много микроконтроллеров, но Arduino популярен благодаря тому, что в интернете очень активно выкладываются и обсуждаются различные проекты. Если вы поищете в google или youtube, вы найдёте миллионы идей и информации чтобы начать осваивать Arduino самостоятельно.
Даже если вы не имеете опыта программирования микроконтроллеров –с Arduino вы быстро научитесь и узнаете что-то об электронике с помощью экспериментов.

Что вам понадобится для начала?
Arduino Uno- 1шт
Usb кабель-1шт
Перемычки 1шт
Макетная плата 1шт
Красный светодиод 4 шт
Резистор 220 Ом 4шт
Резистор 10 ком 1шт
Кнопка без фиксации
Потенциометр
RGB светодиод с общим катодом

Все это можно купить в местном радиомагазине или заказать в интернете.

Для демонстрации и симуляции электрических цепей был использован онлайн симулятор 123D circuits

Этот симулятор лучше всего работает в браузере Chrome
Давайте рассмотрим Arduino по внимательней.

Arduino это не большой компьютер, к которому могут подключаться внешние цепи. В Arduino Uno используется Atmega 328P
Это самый большой чип на плате. Этот чип выполняет программы, которые хранятся в его памяти. Вы можете загрузить программу через usb с помощью Arduino IDE. Usb порт также обеспечивает питание arduino.

Есть отдельный разъём питания. На плате есть два вывода обозначенные 5v и 3.3v, которые нужны для того, чтобы запитывать различные устройства. Так же вы найдете контакты, помеченные как GND, это выводы земли (земля это 0В). Платформа Arduino, так же, имеет 14 цифровых выводов (пинов), помеченных цифрами от 0 до 13, которые подключаются к внешним узлам и имеют два состояния высокое или низкое (включено или выключено). Эти контакты могут работать как выходы или как входы, т.е. они могут либо передавать какие-то данные и управлять внешними устройствами, либо получать данные с устройств. Следующие выводы на плате обозначены А0-А5. Это аналоговые входы, которые могут принимать данные с различных датчиков. Это особенно удобно, когда вам надо измерить некий диапазон, например температуру. У аналоговых входов есть дополнительные функции, которые можно задействовать отдельно.

Как использовать макетную плату.

Макетная плата нужна для того чтобы временно соединить детали, проверить, как работает устройство, до того как вы спаяете все вместе.
Все нижеследующие примеры собраны на макетной плате, чтобы можно было быстро вносить изменения в схему и повторно использовать детали не заморачиваясь с пайкой.

В макетной плате есть ряды отверстий, в которые вы можете вставлять детали и провода. Некоторые из этих отверстий электрически соединены друг с другом.

Два верхних и нижних ряда соединены по — рядно вдоль всей платы. Эти ряды используются, чтобы подавать питание на схему. Это может быть 5в или 3.3в, но в любом случае, первое, что вам надо сделать — это подключить 5в и GND на макетную плату, как показано на рисунке. Иногда эти соединения рядов могут прерываться посередине платы, тогда, если вам понадобится, вы можете их соединить, как показано на рисунке.




Для чего нужен резистор в схеме? В данном случае он ограничивает ток, который проходит через светодиод. Каждый светодиод рассчитан на определённый ток, и если этот ток будет больше, то светодиод выйдет из строя. Узнать, какого номинала должен быть резистор можно с помощью закона ома. Для тех кто не знает или забыл, закон ома говорит, что существует линейная зависимость тока от напряжения. Т.е, чем больше мы приложим напряжение к резистору, тем больше потечет через него ток.
V=I*R
Где V-напряжение на резистор
I— ток через резистор
R— сопротивление, которое надо найти.
Во-первых, мы должны узнать напряжение на резистор. Большинство светодиодов 3мм или 5мм, которые вы будете использовать, имеют рабочее напряжение 3в. Значит, на резисторе нам надо погасить 5-3=2в.

Затем мы вычислим ток, проходящий через резистор.
Большинство 3 и 5мм светодиодов светятся полной яркостью при токе 20мА. Ток больше этого может вывести их из строя, а ток меньшей силы снизит их яркость, не причинив никакого вреда.

Читайте также:  Стирка_кед_в_стиральной_машине

Итак, мы хотим включить светодиод в цепь 5в,чтобы на нем был ток 20мА. Так как все детали включены в одну цепь на резистор тоже будет ток 20мА.
Мы получаем
2В = 20 мА * R
2В = 0.02A * R
R = 100 Ом

100 Ом это минимальное сопротивление, лучше использовать немного больше, потому, что светодиоды имеют некоторый разброс характеристик.
В данном примере используется резистор 220 Ом. Только потому, что у автора их очень много 😉 .

Вставьте светодиод в отверстия посередине платы таким образом, чтобы его длинный вывод был соединён с одним из выводов резистора. Второй конец резистора соедините с 5V, а второй вывод светодиода соедините с GND. Светодиод должен загореться.

Обратите внимание, что есть разница, как соединять светодиод. Ток течёт от более длинного вывода к более короткому. На схеме это можно представить, что ток течёт в ту сторону, куда направлен треугольник. Попробуйте перевернуть светодиод и вы увидите, что он не будет светиться.

А вот как вы будете соединять резистор, разницы совсем нет. Можете его перевернуть или попробовать подсоединить к другому выводу светодиода, это не повлияет на работу схемы. Он все так же будет ограничивать ток через светодиод.

Анатомия Arduino Sketch.

Программы для Arduino называют sketch. Они состоят из двух основных функций. Функция setup и функция loop
Setup () внутри этой функции вы будете задавать все основные настройки. Какие выводы будут работать на вход или выход, какие библиотеки подключать, инициализировать переменные. Функция Setup() запускается только один раз в течение скетча, когда стартует выполнение программы.
Loop() это основная функция, которая выполняется после setup(). Фактически это сама программа. Это функция будет выполняться бесконечно, пока вы не выключите питание.

Arduino мигает светодиодом


В этом примере мы соединим схему со светодиодом к одному из цифровых выводов Arduino и будем включать и выключать его с помощью программы, а так же вы узнаете несколько полезных функций.

pinMode (pinNumber, mode) — эта функция используется в setup () части программы и служит для инициализации выводов, которые вы будете использовать, как вход (INPUT) или выход (OUTPUT). Вы не сможете считать или записать данные с пина, пока не установите его соответственно в pinMode. Эта функция имеет два аргумента: pinNumber— это номер пина, который вы будете использовать.

Mode-задает, как пин будет работать. На вход (INPUT) или выход (OUTPUT). Чтобы зажечь светодиод мы должны подать сигнал ИЗ Arduino. Для этого мы настраиваем пин на выход.
digitalWrite(pinNumber,state) — эта функция служит для того, чтобы задать состояние (state) пина (pinNumber). Есть два основных состояния (вообще их 3), одно это HIGH, на пине будет 5в, другое это Low и на пине будет 0в. Значит, чтобы зажечь светодиод нам надо на пине , соединенном со светодиодом выставить высокий уровень HIGH.

delay(timeInMs) — задержка. Служит для задержки работы программы на заданный в мсек период.
Ниже приведен код, который заставляет мигать светодиод.

Небольшие пояснения по коду.
Строки, которые начинаются с "//" это комментарии Arduino их игнорирует.
Все команды заканчиваются точкой с запятой, если вы их забудете, то получите сообщение об ошибке.

ledPin— это переменная. Переменные используются в программах для хранения значений. В данном примере переменной ledPin присваивается значение 7, это номер пина Arduino. Когда Arduino в программе встретит строку с переменной ledPin , он будет использовать то значение, которое мы указали ранее.
Так запись pinMode(ledPin, OUTPUT) аналогична записи pinMode(7, OUTPUT).
Но в первом случае вам достаточно поменять переменную и она поменяется в каждой строке, где используется, а во втором случае вам, чтобы поменять переменную, придётся ручками в каждой команде вносить изменения.

INT в первой строке указывает на тип переменной. При программировании Arduino важно всегда объявлять тип переменных. Пока вам достаточно знать, что INT объявляет отрицательные и положительные числа.
Ниже представлено моделирование скетча. Нажмите старт, чтобы посмотреть работу схемы.

Как и ожидалось, светодиод гаснет и загорается через одну секунду. Попробуйте поменять задержку, чтобы посмотреть, как она работает.

Управление несколькими светодиодами.

В этом примере вы узнаете, как управлять несколькими светодиодами. Для этого установите ещё 3 светодиода на плату и соедините их с резисторами и выводами Arduino, как показано ниже.

Для того, чтобы включать и выключать светодиоды по очереди надо написать программу подобную этой:

Эта программа будет отлично работать, но это не самое рациональное решение. Код надо изменить. Для того, чтобы программа работала раз за разом мы применим конструкцию, которая называется цикл For .
Циклы удобны, когда надо повторить одно и тоже действие несколько раз. В коде, проведенном выше мы повторяем строки

Регулировка яркости светодиодов

Иногда вам надо будет менять яркость светодиодов в программе. Это можно сделать с помощью команды analogWrite() . Эта команда так быстро включает и выключает светодиод, что глаз не видит это мерцание. Если светодиод половину времени будет включён, а половину выключен, то визуально будет казаться, что он светится в половину своей яркости. Это называется широтно-импульсная модуляция (ШИМ или PWM по-английски). Шим применяется довольно часто, так как с ее помощью можно управлять "аналоговым" компонентом с помощью цифрового кода. Не все выводы Arduino подходят для этих целей. Только те выводы, около которых нарисовано такое обозначение "

Читайте также:  Раскраски_в_черно_белом_цвете

". Вы увидите его рядом с выводами 3,5,6,9,10,11.
Соедините один из ваших светодиодов с одним из выводов ШИМ(у автора это вывод 9). Теперь запуститьскетч мигания светодиода, но прежде измените команду digitalWrite() на analogWrite(). analogWrite() имеет два аргумента: первый это номер вывода, а второй- значение ШИМ (0-255), применительно к светодиодам это будет их яркость свечения, а для электродвигателей скорость вращения. Ниже представлен код примера для разной яркости светодиода.

Попробуйте поменять значение ШИМ в команде analogWrite (),чтобы увидеть, как это влияет на яркость.
Далее вы узнаете, как регулировать яркость плавно от полной до нулевой. Можно ,конечно, скопировать кусок кода 255 раз

Но, сами понимаете — это будет не практично. Для этого лучше всего использовать цикл FOR, который использовали ранее.
В следующем примере используются два цикла, один для уменьшения яркости от 255 до 0

delay(5) используется, чтобы замедлить скорость нарастания и уменьшения яркости 5*256=1280 мсек= 1.28 сек.)
В первой строке используется "brightness-" ,для того чтобы значение яркости уменьшалось на 1, каждый раз, когда цикл повторяется. Обратите внимание, что цикл будет работать до тех пор, пока brightness >=0.Заменив знак > на знак >= мы включили 0 в диапазон яркости. Ниже смоделирован этот скетч.
Это видно не очень хорошо, но идея понятна.

RGB-светодиод и Arduino

RGB-светодиод на самом деле это три светодиода разного цвета в одном корпусе.

Включая разные светодиоды с различной яркостью можно комбинировать и получать разные цвета. Для Arduino, где количество градаций яркости равно 256 вы получите 256^3=16581375 возможных цветов. Реально их, конечно, будет меньше.
Светодиод, который мы будем использоваться общим катодом. Т.е. все три светодиода конструктивно соединены катодами к одному выводу. Этот вывод мы подсоединим к выводу GND. Остальные выводы, через ограничительные резисторы, надо подсоединить к выводам ШИМ. Автор использовал выводы 9-11.Таким образом можно будет управлять каждым светодиодом отдельно. В первом скетче показано, как включить каждый светодиод отдельно.

В следующем примере используются команды analogWrite() и random() , чтобы получать различные случайные значения яркости для светодиодов. Вы увидите разные цвета, меняющиеся случайным образом.

Random(256)-возвращает случайное число в диапазоне от 0 до 255.
В прикрепленном файле скетч, который продемонстрирует плавные переходы цветов от красного к зеленому, затем к синему, красному, зеленому и т.д. переходы.zip [373 b] (скачиваний: 393)
Пример скетча работает, но есть много повторяющегося кода. Можно упростить код, написав собственную вспомогательную функцию, которая будет плавно менять один цвет на другой.
Вот как она будет выглядеть: функция.zip [263 b] (скачиваний: 427)
Давайте рассмотрим определение функции по частям. Функция называется fader и имеет два аргумента. Каждый аргумент отделяется запятой и имеет тип объявленный в первой строке определения функции: void fader (int color1, int color2). Вы видите, что оба аргумента объявлены как int, и им присвоены имена color1 и color2 в качестве условных переменных для определения функции. Void означает, что функция не возвращает никаких значений, она просто выполняет команды. Если надо было бы написать функцию, которая возвращала результат умножения это выглядело бы так :

В следующем скетче будет использоваться кнопка с нормально разомкнутыми контактами, без фиксации.

В этом скетче несколько новых команд.
digitalRead(pinNumber) -эта команда принимает значение High (высокий уровень) и low (низкий уровень), того вывода, который мы проверяем. Предварительно в setup() этот вывод надо настроить на вход.
pinMode (buttonPin, INPUT) ; //где buttonPin это номер вывода, куда подсоединяется кнопка.
Последовательный порт позволяет отправлять Arduino сообщения на компьютер, в то время, как сам контроллер выполняет программу. Это полезно для отладки программы, отправки сообщений на другие устройства или приложения. Чтобы включить передачу данных через последовательный порт (другое название UART или USART), надо инициализировать его в setup()
Serial.begin()
Serial.begin() имеет всего один аргумент-это скорость передачи данных между Arduino и компьютером.
скетче используется команда Serial.print() для вывода сообщения на экран в Arduino IDE (Tools >> Serial Monitor).
If/else — конструкция позволяют контролировать ход выполнения программы, объеденив несколько проверок в одном месте.
If(если) digitalRead возвращает значение HIGH, то на мониторе выводится слово "нажата". Else(иначе) на мониторе выводится слово " отжата" . Теперь можно попробовать включать и выключать светодиод по нажатию кнопки.

analogRead (pinNumber) analogRead позволяет считать данные с одного из аналоговых выводов Arduino и выводит значение в диапазоне от 0 (0В) до 1023 (5В). Если напряжение на аналоговом входе будет равно 2.5В, то будет напечатано 2.5 / 5 * 1023 = 512
analogRead имеет только один аргумент- Это номер аналогового входа (А0-А5). В следующем скетче приводится код считывания напряжения с потенциометра. Для этого подключите переменный резистор, крайними выводами на пины 5V и GND, а средний вывод на вход А0.

Запустите следующий код и посмотрите в serial monitor, как меняются значения в зависимости от поворота ручки резистора.

Следующий скетч объединяет скетч нажатия кнопки и скетч управления яркостью светодиода. Светодиод будет включаться от кнопки, и управлять яркостью свечения будет потенциометр.

Ссылка на основную публикацию
Как_снять_клеща_с_кошки
Сами по себе укусы иксодовых клещей неприятны, но не опасны: самым серьезным осложнением может быть инфекция и раздражение от слюны...
Как_сделать_цвет_дерева
Таблица смешивания цветов / смешивания красок / синтеза оттенков позволяет узнать, как при смешивании двух и более цветов и оттенков...
Как_сделать_цвет_тиффани
Вы неравнодушны к ювелирным изделиям одноименной компании и мечтаете хотя бы об одной вещице из последней коллекции? С этим мы,...
Как_снять_кнопку_инсталляции_геберит
Популярность подвесных инсталляций объясняется компактностью, по сравнению с традиционными конструкциями унитазов. Механизм слива смонтирован внутри стены, что облегчает уборку, но...
Adblock detector