Количество_теплоты_через_напряжение_и_сопротивление

Количество_теплоты_через_напряжение_и_сопротивление

В XIX веке независимо друг от друга, англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников электрическим током и опытным путём обнаружили закономерность: количество теплоты, выделяющееся в проводнике с током, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.

Силами других учёных было выяснено, что это утверждение справедливо для любых проводников: твёрдых, жидких, газообразных. Поэтому закономерность получила название закон Джоуля-Ленца:

Q = I² R t

Q – выделившееся количество теплоты, Дж
I – сила электрического тока в проводнике, А
R – сопротивление проводника, Ом
t – время прохождения тока, с

Справа показана схема установки, при помощи которой можно экспериментально проверить закон Джоуля–Ленца. Разделив напряжение на силу тока, по формуле R=U/I вычисляют сопротивление. Термометром измеряют повышение температуры воды. По формулам Q=I²Rt и Q=cmΔt° вычисляют количества теплоты, которые должны быть равны друг другу (с учётом погрешностей).

Для тех, кто интересуется физикой более глубоко, специально заметим, что закон Джоуля–Ленца можно получить не только экспериментально, но и вывести теоретическим путём, используя знакомые нам формулы.

Согласно закону Ома
U = I · R | I = U / R
Согласно формуле работы тока
A = I·U·t = I·(I·R)·t | A = I·U·t = (U/R)·U·t
В итоге получаем:
A = (I&sup2·R)·t | A = (U²/R)·t

Мы получили сразу две новые формулы; выясним их физический смысл.

  1. Какие опыты проводили Ленц и Джоуль? Они .
  2. Какой научный факт был ими обнаружен?
  3. Закон Джоуля-Ленца применим (выполняется) .
  4. Произведение в правой части равенства представляет собой .
  5. Закон Джоуля-Ленца всегда можно .
  6. Сопротивление спирали в калориметре находят, .
  7. Термометр служит, чтобы измерить .
  8. Формулы Q=I²Rt и Q=cmΔt° служат, чтобы рассчитать .
  9. Закон Джоуля-Ленца можно получить не только опытным, но и .
  10. Применив закон Ома и формулу для работы тока, .

Левая формула A=I&sup2Rt похожа на формулу закона Джоуля–Ленца, однако в левой её части стоит работа тока, а не количество теплоты. Что даст нам право считать эти величины равными? Для этого мы вспомним первый закон термодинамики (см. § 6-з) и выразим из него работу.

ΔU = Q + A следовательно A = ΔU – Q

Здесь ΔU – это изменение внутренней энергии нагреваемого током проводника; Q – количество теплоты, отданное проводником (на это указывает знак «–» впереди); A – работа, совершённая над проводником. Выясним, что это за работа.

Сам проводник неподвижен, но внутри него движутся электроны, наталкиваясь на ионы кристаллической решётки и передавая им часть своей кинетической энергии. Чтобы поток электронов не ослабевал, силы электрического поля должны постоянно совершать работу. Поэтому A – работа электрического поля по перемещению электронов проводника.

Обсудим теперь величину ΔU применительно к проводнику, в котором начинает идти ток. Проводник будет нагреваться, и его внутренняя энергия будет увеличиваться. По мере нагрева будет возрастать разность между температурами проводника и окружающей среды. Согласно закономерности Ньютона (см. § 6-л), будет расти мощность теплоотдачи. Вскоре это приведёт к тому, что температура проводника перестанет увеличиваться. И с этого момента внутренняя энергия проводника перестанет изменяться, то есть величина ΔU станет равной нулю.

Читайте также:  Крепление_боксерской_груши_к_потолку

Первый закон термодинамики для этого состояния запишется: A = –Q. Словами: если внутренняя энергия проводника не меняется, то работа тока полностью превращается в теплоту. Используя этот вывод, запишем все три формулы для вычисления работы тока в других видах:

Q = I·U·t Q = I&sup2·R·t Q = U²/R·t

Эти формулы мы пока будем считать равноправными. Позднее мы узнаем, что средняя формула справедлива всегда (поэтому и носит название закона), а две крайние – только при определённых условиях (которые мы сформулируем в старших классах).

  1. Поскольку в формулах не Q, а A, нужно обоснование, чтобы .
  2. Таким обоснованием для нас послужит .
  3. В равенстве A=ΔU–Q последнее слагаемое – это .
  4. В левой части этого же равенства стоит .
  5. Работа, совершённая над проводником, – это .
  6. После включения в цепи тока любой её .
  7. Нарастание мощности теплоотдачи проводника .
  8. Поэтому изменение внутренней энергии обратится в ноль, то есть .
  9. Запись A = –Q первого закона термодинамики означает: .
  10. Мы обосновали замену A на Q и сообщаем на будущее, что .

Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей

В XIX веке независимо друг от друга, англичанин Д. Джоуль и россиянин Э. Ленц изучали нагревание проводников электрическим током и опытным путём обнаружили закономерность: количество теплоты, выделяющееся в проводнике с током, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.

Силами других учёных было выяснено, что это утверждение справедливо для любых проводников: твёрдых, жидких, газообразных. Поэтому закономерность получила название закон Джоуля-Ленца:

Q = I² R t

Q – выделившееся количество теплоты, Дж
I – сила электрического тока в проводнике, А
R – сопротивление проводника, Ом
t – время прохождения тока, с

Справа показана схема установки, при помощи которой можно экспериментально проверить закон Джоуля–Ленца. Разделив напряжение на силу тока, по формуле R=U/I вычисляют сопротивление. Термометром измеряют повышение температуры воды. По формулам Q=I²Rt и Q=cmΔt° вычисляют количества теплоты, которые должны быть равны друг другу (с учётом погрешностей).

Для тех, кто интересуется физикой более глубоко, специально заметим, что закон Джоуля–Ленца можно получить не только экспериментально, но и вывести теоретическим путём, используя знакомые нам формулы.

Согласно закону Ома
U = I · R | I = U / R
Согласно формуле работы тока
A = I·U·t = I·(I·R)·t | A = I·U·t = (U/R)·U·t
В итоге получаем:
A = (I&sup2·R)·t | A = (U²/R)·t

Мы получили сразу две новые формулы; выясним их физический смысл.

  1. Какие опыты проводили Ленц и Джоуль? Они .
  2. Какой научный факт был ими обнаружен?
  3. Закон Джоуля-Ленца применим (выполняется) .
  4. Произведение в правой части равенства представляет собой .
  5. Закон Джоуля-Ленца всегда можно .
  6. Сопротивление спирали в калориметре находят, .
  7. Термометр служит, чтобы измерить .
  8. Формулы Q=I²Rt и Q=cmΔt° служат, чтобы рассчитать .
  9. Закон Джоуля-Ленца можно получить не только опытным, но и .
  10. Применив закон Ома и формулу для работы тока, .

Левая формула A=I&sup2Rt похожа на формулу закона Джоуля–Ленца, однако в левой её части стоит работа тока, а не количество теплоты. Что даст нам право считать эти величины равными? Для этого мы вспомним первый закон термодинамики (см. § 6-з) и выразим из него работу.

Читайте также:  Какой_способ_сушки_древесины_наиболее_распространен

ΔU = Q + A следовательно A = ΔU – Q

Здесь ΔU – это изменение внутренней энергии нагреваемого током проводника; Q – количество теплоты, отданное проводником (на это указывает знак «–» впереди); A – работа, совершённая над проводником. Выясним, что это за работа.

Сам проводник неподвижен, но внутри него движутся электроны, наталкиваясь на ионы кристаллической решётки и передавая им часть своей кинетической энергии. Чтобы поток электронов не ослабевал, силы электрического поля должны постоянно совершать работу. Поэтому A – работа электрического поля по перемещению электронов проводника.

Обсудим теперь величину ΔU применительно к проводнику, в котором начинает идти ток. Проводник будет нагреваться, и его внутренняя энергия будет увеличиваться. По мере нагрева будет возрастать разность между температурами проводника и окружающей среды. Согласно закономерности Ньютона (см. § 6-л), будет расти мощность теплоотдачи. Вскоре это приведёт к тому, что температура проводника перестанет увеличиваться. И с этого момента внутренняя энергия проводника перестанет изменяться, то есть величина ΔU станет равной нулю.

Первый закон термодинамики для этого состояния запишется: A = –Q. Словами: если внутренняя энергия проводника не меняется, то работа тока полностью превращается в теплоту. Используя этот вывод, запишем все три формулы для вычисления работы тока в других видах:

Q = I·U·t Q = I&sup2·R·t Q = U²/R·t

Эти формулы мы пока будем считать равноправными. Позднее мы узнаем, что средняя формула справедлива всегда (поэтому и носит название закона), а две крайние – только при определённых условиях (которые мы сформулируем в старших классах).

  1. Поскольку в формулах не Q, а A, нужно обоснование, чтобы .
  2. Таким обоснованием для нас послужит .
  3. В равенстве A=ΔU–Q последнее слагаемое – это .
  4. В левой части этого же равенства стоит .
  5. Работа, совершённая над проводником, – это .
  6. После включения в цепи тока любой её .
  7. Нарастание мощности теплоотдачи проводника .
  8. Поэтому изменение внутренней энергии обратится в ноль, то есть .
  9. Запись A = –Q первого закона термодинамики означает: .
  10. Мы обосновали замену A на Q и сообщаем на будущее, что .

Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей

Знаменитый русский физик Ленц и английский физик Джоуль, проводя опыты по изучению тепловых действий электрического тока, независимо друг от друга вывели закон Джоуля-Ленца. Данный закон отражает взаимосвязь количества теплоты, выделяемого в проводнике, и электрического тока, проходящего по этому проводнику в течение определенного периода времени.

Свойства электрического тока

Когда электрический ток проходит через металлический проводник, его электроны постоянно сталкиваются с различными посторонними частицами. Это могут быть обычные нейтральные молекулы или молекулы, потерявшие электроны. Электрон в процессе движения может отщепить от нейтральной молекулы еще один электрон. В результате, его кинетическая энергия теряется, а вместо молекулы происходит образование положительного иона. В других случаях электрон, наоборот, соединиться с положительным ионом и образовать нейтральную молекулу.

Читайте также:  Эспарцет_или_люцерна_что_лучше

В процессе столкновений электронов и молекул происходит расход энергии, в дальнейшем превращающейся в тепло. Затраты определенного количества энергии связаны со всеми движениями, во время которых приходится преодолевать сопротивление. В это время происходит превращение работы, затраченной на преодоление сопротивления трения, в тепловую энергию.

Сопротивление в электрических проводниках обладает теми же качествами, как и у обычного сопротивления. Для того чтобы провести ток через проводник, источником тока затрачивается определенное количество энергии, превращающейся в тепло. Данное превращение как раз и отражает закон Джоуля – Ленца, известного также, как закон теплового действия тока.

Закон джоуля Ленца формула и определение

Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.

В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I 2 Rt, в которой Q отображает количество выделенной теплоты, I – силу тока, R – сопротивление проводника, t – период времени. Величина “к” представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока – в амперах, сопротивление – в Омах, а время – в секундах. Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I 2 Rt.

При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина “к”, применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I 2 Rt. В соответствии с законом Ома I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U 2 /R)t.

Основная формула Q = I 2 Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая. При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней. Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.

При параллельном соединении этих же проводников, значение электрического тока в каждом из них будет различным, а напряжение на концах – одинаковым. В этом случае для расчетов больше подойдет формула Q = (U 2 /R)t. Количество теплоты, выделяемое проводником, будет обратно пропорционально его проводимости. Таким образом, закон Джоуля – Ленца широко используется для расчетов установок электрического освещения, различных отопительных и нагревательных приборов, а также других устройств, связанных с преобразованием электрической энергии в тепловую.

Ссылка на основную публикацию
Когда_надо_сажать_вишню
Давно уже мечтаете наварить впрок домашнего вишневого варенья или вдоволь полакомиться свежими кисло-сладкими плодами, но пока не представляете даже, когда...
Кнопка_повер_на_пульте_от_телевизора
Страница 7: Mute (отключение звука), Кнопки с цифрами, Psm (память статуса изображения), Ssm (память статуса звука), I/ii, Menu (меню), Кнопка...
Кнопка_с_индикацией_220в
Цена: $2.79 (покупал за $2.62) Перейти в магазин Представляю вашему вниманию обзор на достаточно редкий для Муськи товар — кнопку...
Когда_начинается_отопительный_сезон_2018_в_воронеже
Тепло начали подавать на соцобъекты. Мэр Воронежа Вадим Кстенин подписал постановление о начале отопительного сезона 2018–2019 годов на объектах социальной...
Adblock detector