Схема_резервного_питания_от_аккумулятора_с_подзарядкой

Схема_резервного_питания_от_аккумулятора_с_подзарядкой

zeroelectronics.ru

Электроника для начинающих и профессионалов

Четыре схемы резервного питания

Довольно часто возникает необходимость обеспечить резервное питания вашего устройства, в данной статье рассматривается 4 способа как обеспечить это.

Самый простой

Самый простой способ перейти на резервное питание-2 диода

Коммутация резервной нагрузки двумя диодами

Будет открыт только один из диодов, от того источника питания, напряжение на котором больше. Преимущества схемы-простота и дешевизна. Недостатки схемы очевидны, зависимость напряжения на нагрузке от тока, типа диода(шотки или обычный), температуры. Напряжение всегда будет ниже чем у источника на величину падения напряжения на диоде.

Немного сложней

Коммутация резервной нагрузки на полевике

Это схема немного сложнее, работает она следующим образом: когда напряжение VCC присутствует, и оно больше чем напряжение резервного источника(в данном случае это батарея BT2), то мосфет закрыт, потому что напряжение на затворе(Gate) выше чем на Истоке(Source), пропуск напряжения к нагрузке и Истоку обеспечивает открывшийся диод D3. Когда VCC пропадет, напряжение на Затворе пропадет вслед за ним, зато откроется диод внутри мосфета, обеспечив напряжение на Истоке, ну а поскольку на истоке теперь есть напряжение, а на Затворе нет, то транзистор полностью откроется, обеспечив коммутацию батареи без потери напряжения. Данный способ отлично подходит для коммутации питания для модуля GSM, внешнее напряжение выбираем 4,5в, тогда к модулю через диод D3 придет 4,2-4,3в а от батареи напряжение будет идти без потерь.

Дорогой но без потерь

Без потерь напряжения можно коммутировать источники с помощью специальных микрочхем, в частности LTC4412 скачать даташит Однако, эта микросхема бывает дефицитной и дорогой.

Оптимальный без потерь

Ну вот и подошли к оптимальному способу, причем без потерь. Для начала рассмотрим блок схему LTC4412

Сразу понятно, что в ней нет ничего сложного, так почему бы не повторить её на дискретных элементах? Блок PowerSorceSelector-это матрица из двух диодов, обеспечивает питание остальной схемы, A1-это компаратор, AnalogController-непонятно что, однако можно предположить, что ничего особо важного он не делает, позже станет понятно почему.

Попробуем изобразить это.

Схема с компаратором

DA3-это компаратор. Он сравнивает напряжения на двух источниках. Питается через диод D4 или D5. Когда напряжение на VCC больше чем на батарее, на выходе компаратора устанавливается высокий уровень, это закрывает VT2, и открывает VT3, потому что он подключен на выход через инвертор. Таким образом, VCC проходит на нагрузку без потерь. В случае, когда VCC будет меньше батареи, низкий уровень на выходе компаратора закроет VT3 и откроет VT2.

Надо сказать пару слов о выборе деталей. DA3, DD1 должны иметь потребление, которое допустимо в данной системе, выбор очень широк, от единиц миллиампер, до сотен наноампер (например MCP6541UT-E/OT и 74LVC1G02). Диоды обязательно шотки, если падение на диоде будет выше порога открытия транзистора(а у IRLML6402TR он может быть -0,4в), то он не сможет полностью закрыться.

Схема резервного питания от аккумулятора с подзарядкой

Источник питания с буферной АКБ.

Читайте также:  Рисунки_для_вышивки_шаблоны_схемы

Автор: I.Cherry
Опубликовано 01.01.1970

И так — как-то в одно время потихоньку на нашем предприятии (фирма очень бедная: как и большинство ТЕПЛОЕНЕРГО в Украине) начали выходить из строя, т.е. выгорать "по горячей стороне" импульсные БП которые в последствии были заменены .
Пришлось сообразить, т.е. сделать 6шт. источников питания для питания некоторых приборов (имеют отношение к метрологии , КИПиА).
Требования к ним были такими:
1) стабилизированное питание датчика — 20:28В/0.1А
2) стабилизированное питание самого прибора — 10:14В/0.2А
3) гальваническая развязка между каналами питания
4) резервное питание прибора (датчика нет) от АКБ 12В (дальше перечислять не буду)
Решил велосипед не изобретать, а использовать уже наработанные схемные решения, тем более надо было, чтоб получилось дешево и качественно. Да и как то сильно не заморачивался с выбором схемотехники — в голове сами по себе вырисовывались примеры реализации БП.
Ну вот и вся история а теперь — к делу.
Схема устройства:

Как видно из схемы, БП состоит из двух независимых каналов 24В и 12В построенных на "кренках". По 12В к LM7812 установлен диод VD5, что поднимает напряжение до 12.7В для компенсации падения на VD12. Больше по стабилизаторам нечего сказать, так как это общеизвестная схемотехника и описана в любом справочнике и конечно, все это есть в "Обучалке".
Для обеспечения бесперебойного питания используется аккумуляторная батарея (в моем случае — это "GEMBIRD 12V4.5A").
Схема, показанная на рисунке, исключает повреждение аккумуляторов из-за получения ими избыточного заряда. Она автоматически отключает процесс заряда при повышении напряжения на элементах выше допустимой величины и состоит из стабилизатора тока на транзисторе VT3, усилителя VT2, детектора уровня напряжения на VT1 .
Индикатором процесса заряда является свечение светодиода VD4, который при его окончании гаснет.
Настройку устройства начинаем со стабилизатора тока. Для этого временно замыкаем вывод базы транзистора VT3 на общий провод, а вместо аккумуляторов подключаем эквивалентную нагрузку с миллиамперметром 0. 500 мА. Контролируя прибором ток в нагрузке, подбором резистора R3 устанавливаем номинальный ток заряда для конкретного типа аккумуляторов.
Вторым этапом настройки является установка уровня ограничения выходного напряжения с помощью подстроечного резистора R4. Для этого, контролируя напряжение на нагрузке, увеличиваем сопротивление нагрузки до момента появления максимально допустимого напряжения (13.8 В для АКБ 12В/4.5А). Резистором R5 добиваемся отключения тока в нагрузке (погаснет светодиод).
Трансформатор подойдет любой малогабаритный с напряжением на вторичных обмотках 15. 18 В; для 24В-го канала — 25..28В.
Транзистор VT3 крепится к теплорассеивающей пластине. Для удобства настройки в качестве R4 желательно использовать многооборотный резистор типа СП5-2 или аналогичный, остальные резисторы подойдут любого типа.
Для осуществления резервного питания по 12В от АКБ используются цепи схемы на элементах VD7, VT4, VT5 и реле (импортное 12В) с одной группой контактов переключения. При наличии сетевого питания а значит и +U на конденсаторах С4, С5 , транзистор VT4 открыт и реле обесточено, через замкнутые контакты происходит заряд АКБ. При пропадании напряжения в сети, транзистор VT4 закрывается — VT5 открывается и срабатывает реле — своими контактами подключая "+" АКБ через VD11 к нагрузке.
Теперь немного об использованных деталях:
— диоды — любые ..исходя из токов и напряжений, я применил самые дешевые импортные 1N4007;
— транзисторы VT1, VT2, VT4 — КТ3102, можно КТ315 или импортные аналоги.
— транзистор VT3 можно применить КТ814 или КТ816 — зависит от емкости АКБ и тока которым будет заряжаться;
Печатная плата:

Читайте также:  Как_сделать_кашу_густой

Теперь немного в фотографиях — процесс изготовления:

Печатная плата. Впаял "релюху" — потом вспомнил, что надо для истории сфотографировать. Дорожки не залуживал, т.к. сам текстолит оказался плохого качества — отслаивались дорожки даже при мин. температуре паяльника. После пайки покрыл всю плату лаком.

Добавляем резервный аккумуляторный источник питания в небольшие электронные устройства

В данной статье мы рассмотрим, как создать резервный аккумуляторный источник питания для небольших электронных устройств, чтобы на них никогда не пропадало питание.

Резервный аккумуляторный источник питания

Существует множество электронных устройств, на которые должно подаваться питание постоянно и без перебоев. Хорошим примером таких устройств являются будильники. Если посреди ночи питание пропадет, и будильник вовремя не сработает, вы можете пропустить важную встречу. Самым простым решением этой проблемы является резервная аккумуляторная система питания. Таким образом, если питание от внешнего источника падает ниже определенного порогового значения, аккумуляторы автоматически нагрузку на себя и продолжают всё питать, пока не восстановится внешнее питание.

Компоненты для резервного аккумуляторного источника питания

Компоненты

  • источник питания постоянного тока;
  • аккумуляторы;
  • батарейный отсек;
  • стабилизатор напряжения (необязательно);
  • резистор 1 кОм;
  • 2 диода (с допустимым прямым током, превышающим ток от источника питания);
  • разъем «папа» для постоянного напряжения;
  • разъем «мама» для постоянного напряжения.

Принципиальная схема резервного аккумуляторного источника питания

Принципиальная схема

Существует множество различных видов аккумуляторных систем резервного питания, и выбор типа системы в значительной степени зависит от того, что именно вы питаете. Для данного проекта я разработал простую схему, которую можно использовать для питания маломощной электроники, которая работает от 12 вольт или ниже.

Во-первых, нам нужен источник питания постоянного тока. Такие источники очень распространены и бывают различных напряжений и номинальных токов. Блок питания подключается к схеме через разъем питания постоянного тока. Затем он подключается к блокирующему диоду. Блокирующий диод предотвращает протекание тока из резервной аккумуляторной системы обратно в источник питания. Далее, через резистор и еще один диод подключается аккумуляторная батарея. Резистор позволяет батарее медленно заряжаться от источника питания, а диод обеспечивает низкое сопротивление пути протекания тока между батареей и конечной схемой, таким образом, аккумулятор может питать конечную схему, если выходное напряжение источника питания упадет слишком низко. Если схема, которую вы питаете, требует стабилизированный источник питания, то вы можете просто добавить в конце стабилизатор напряжения.

Принципиальная схема резервного аккумуляторного источника питания

Читайте также:  Красивые_зажимы_для_штор

Если вы питаете Arduino или аналогичный микроконтроллер, то вы должны учесть, что вывод Vin уже подключен к встроенному стабилизатору напряжения на плате. Таким образом, вы можете подать на вывод Vin любое напряжение в диапазоне от 7 до 12 вольт.

Выбор номинала резистора

Выбор номинала резистора должен быть сделан с осторожностью, чтобы вдруг не перезарядить аккумулятор. Чтобы выяснить, с каким номиналом надо использовать резистор, необходимо в первую очередь рассмотреть источник питания. Когда вы работаете с нестабилизированным источником питания, выходное напряжение не неизменно. Когда схема, которая питается от него, выключается или отключается, напряжение на выходных клеммах источника увеличивается. Это напряжение холостого хода может достигать значения в полтора раза выше, чем то напряжение, которое указано на корпусе блока питания. Чтобы проверить это, возьмите мультиметр и измерьте напряжение на выходных клеммах источника питания, когда к нему ничего не подключено. Это и будет максимальное напряжение источника питания.

NiMH аккумулятор может безопасно заряжаться при токе заряда C/10, или одна десятая емкости аккумулятора в час. Однако прикладывание тока такой же величины после того, как аккумулятор был полностью заряжен, может привести к его повреждению. Если предполагается, что аккумулятор будет непрерывно заряжаться в течение неопределенного периода времени (как, например, в аккумуляторной системе резервного питания), то ток заряда должен быть очень низким. В идеале, ток заряда должен быть равен C/300 или еще меньше.

В моем случае, я буду использовать аккумуляторный отсек размера AA с аккумуляторами емкостью 2500 мАч. В целях безопасности мне нужен ток заряда 8 мА или меньше. Исходя из этого, можно рассчитать, резистор какого номинала нам нужен.

Чтобы рассчитать необходимое сопротивление вашего резистора, начните с определения напряжения холостого хода источника питания, затем вычтите из него напряжение полностью заряженной аккумуляторной батареи. Это даст вам напряжение на резисторе. Чтобы определить сопротивление, разделите разность напряжений на значение максимального тока. В моем случае, напряжение холостого хода источника питания равно 9В, а напряжение на аккумуляторной батарее равно около 6В. Это дает разность напряжений 3В. Деление этих 3 вольт на ток 0,008 ампер дает значение сопротивления 375 Ом. Поэтому номинал нашего резистора должен быть не менее 375 Ом. Для дополнительной безопасности я использовал резистор 1 кОм. Однако имейте в виду, что использование резистора с большим сопротивлением значительно замедлит заряд аккумулятора. Но это не проблема, если система резервного питания используется очень редко.

Резервный аккумуляторный источник питания

При использовании данной схемы резервного питания вы можете подключить к ней ваш блок питания через разъем питания «папа». Этот разъем подключен к схеме резервного питания от аккумулятора. Тогда на выходе схемы резервного питания устанавливается разъем «мама», в который может быть подключено электронное устройство, которое вы хотите запитать. Этот простой встраиваемый дизайн избавит вас от необходимости модифицировать источник питания или ваше устройство.

Ссылка на основную публикацию
Adblock detector